科目: 来源: 题型:
【题目】(1)如图1,已知
,
平分外角
,
平分外角
.直接写出
和
的数量关系,不必证明;
(2)如图2,已知
,
和
三等分外角
,
和
三等分外角
.试确定
和
的数量关系,并证明你的猜想;(不写证明依据)
(3)如图3,已知
,
、
和
四等分外角
,
、
和
四等分外角
.试确定
和
的数量关系,并证明你的猜想;(不写证明依据)
(4)如图4,已知
,将外角
进行
分,
是临近
边的等分线,将外角
进行
等分,
是临近
边的等分线,请直接写出
和
的数量关系,不必证明.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿拉伯Al-Biruni(973年~1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
阿基米德折弦定理:如图1,AB和BC是
的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是
的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.
下面是运用“截长法”证明CD=AB+BD的部分证明过程.
![]()
证明:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是
的中点, ∴MA=MC ...
![]()
任务:(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图(3),已知等边△ABC内接于
,AB=2,D为圆上一点,∠ABD=45°,AE⊥BD与点E,则△BDC的周长是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图像大致为 ( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(2011山东济南,27,9分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线
经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线
的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线
经过点A(
,0),B(
,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=﹣
x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com