相关习题
 0  359390  359398  359404  359408  359414  359416  359420  359426  359428  359434  359440  359444  359446  359450  359456  359458  359464  359468  359470  359474  359476  359480  359482  359484  359485  359486  359488  359489  359490  359492  359494  359498  359500  359504  359506  359510  359516  359518  359524  359528  359530  359534  359540  359546  359548  359554  359558  359560  359566  359570  359576  359584  366461 

科目: 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+3过点A(-1,0),B(3,0),点M,N为抛物线上的动点,过点MMD∥y轴,交直线BC于点D,交x轴于点E.

(1)求抛物线的表达式;

(2)过点NNF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;

(3)若∠DMN=90°,MD=MN,直接写出点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点O(00)A(01)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,依此规律,则点A7的坐标是(  )

A.(-80)B.(8-8)C.(-88)D.(016)

查看答案和解析>>

科目: 来源: 题型:

【题目】1)如图1△ABC为等腰直角三角形,∠ACB90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于且小于45°).旋转后三角板的一直角边与AB交于点D.在三角板另一直角边上取一点F,使CFCD,线段AB上取点E,使∠DCE45°,连接AFEF.请探究结果:

直接写出∠EAF的度数=__________度;若旋转角∠BCDα°,则∠AEF____________度(可以用含α的代数式表示);

②DEEF相等吗?请说明理由;

(类比探究)

2)如图2△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于且小于30°).旋转后三角板的一直角边与AB交于点D.在三角板斜边上取一点F,使CFCD,线段AB上取点E,使∠DCE30°,连接AFEF

直接写出∠EAF的度数=___________度;

AE1BD2,求线段DE的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,ACB=90°,∠A=30°,点OAB中点,点P为直线BC上的动点(不与点B、点C重合),连接OCOP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ

(1)如图1,当点P在线段BC上时,请直接写出线段BQCP的数量关系.

(2)如图2,当点PCB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;

(3)如图3,当点PBC延长线上时,若BPO=15°,BP=4,请求出BQ的长

查看答案和解析>>

科目: 来源: 题型:

【题目】直线y=kx+b与反比例函数y=(x0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.

(1)求直线AB的解析式;

(2)若点Px轴上一动点,当△COD与△ADP相似时,求点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BDEC

(1)求证:四边形BECD是平行四边形;

(2)若∠A=50°,则当∠BOD= ______ °时,四边形BECD是矩形.

查看答案和解析>>

科目: 来源: 题型:

【题目】我市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:

(1)这次被调查的总人数是______

(2)补全条形统计图;

(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;

(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料:

如果两个正数ab,即a0b0,则有下面的不等式: ,当且仅当ab时取等号,我们把叫做正数ab的算术平均数,把叫做正数ab的几何平均数,于是上述的不等式可以表述为:两个正数的算术平均数不小于(即大于或等于)他们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.

实例剖析:

已知x0,求式子的最小值.

解:令axb,则由,得当且仅当时,方程两边同时乘x,得到,解得x2,式子有最小值,最小值为4

学以致用:

根据上面的阅读材料回答下列问题:

1)已知x0,则当x__________时,式子取到最小值,最小值为:_______________

2)用篱笆围一个面积为100m的长方形花园,问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少米?

3)已知x0,则x取何值时,式子取到最小值,最小值是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】小王是新星厂的一名工人,请你阅读下列信息:

信息一:工人工作时间:每天上午800—1200,下午1400—1800,每月工作25天;

信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:

生产甲种产品数()

生产乙种产品数()

所用时间(分钟)

10

10

350

30

20

850

信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元;

信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元.请根据以上信息,解答下列问题:

(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟;

(2)20181月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(BFC在一条直线上).

(1)求办公楼AB的高度;

(2)若要在AE之间挂一些彩旗,请你求出AE之间的距离.

(参考数据:sin22°cos22°tan22°

查看答案和解析>>

同步练习册答案