相关习题
 0  359406  359414  359420  359424  359430  359432  359436  359442  359444  359450  359456  359460  359462  359466  359472  359474  359480  359484  359486  359490  359492  359496  359498  359500  359501  359502  359504  359505  359506  359508  359510  359514  359516  359520  359522  359526  359532  359534  359540  359544  359546  359550  359556  359562  359564  359570  359574  359576  359582  359586  359592  359600  366461 

科目: 来源: 题型:

【题目】1)解不等式组,并求出所有整数解的和.

2)分解因式:

3)解方程:

4)先化简,再求值:,其中

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α45°,旗杆低端D到大楼前梯坎底边的距离DC20米,梯坎坡长BC12米,梯坎坡度i=1: ,则大楼AB的高度为________米.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x0)的图象交AB于点N,的图象交AB于点N, S矩形OABC=32,tanDOE=,,则BN的长为______________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC=4cm,∠BAC=90°.动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为ts,四边形APQC的面积为ycm2

(1)t为何值时,△PBQ是直角三角形?

(2)①yt的函数关系式,并写出t的取值范围;

t为何值时,y取得最小值?最小值为多少?

(3)PQ的长为xcm,试求yx的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=﹣x2﹣2x+m+1x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<0,x2>0,与y轴交于点C,顶点为P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的两个实根,则x1+x2=﹣ ,x1x2=

(1)m的取值范围;

(2)OA=3OB,求抛物线的解析式;

(3)(2)中抛物线的对称轴PD上,存在点Q使得△BQC的周长最短,试求出点Q的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.

(1)在图1中证明CE=CF;

(2)若∠ABC=90°,GEF的中点(如图2),直接写出∠BDG的度数;

(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间 每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x10的正整数倍).

1)设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;

2)设宾馆一天的利润为w元,求wx的函数关系式;

3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:

小强:阿姨,我有10元,我想买一盒饼干和一袋牛奶.

阿姨:小朋友,本来你用10元钱买一盒饼干是有剩的,但是要再买一袋牛奶钱就不够了,不过今天是儿童节,饼干打九折,两样东西请你拿好,还要找你8角钱.

如果每盒饼干和每袋牛奶的标价分别是元,元,请你根据以上信息,回答下列问题:

1)找出之间的关系式;

2)求出每盒饼干和每袋牛奶的标价.

查看答案和解析>>

科目: 来源: 题型:

【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.

(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;

(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?

(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=x+3与二次函数y=+bx+c的图象分别交于B,C两点,点B在第一象限.

(1)求二次函数y=+bx+c的表达式;

(2)连接AB,求AB的长;

(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.

查看答案和解析>>

同步练习册答案