科目: 来源: 题型:
【题目】如图在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,
(1)若△ABD的周长是19,AB=7,求BC的长;
(2)求∠BAD的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算一个内角,结果得到的和是2020°,则少算了这个内角的度数为 _________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”,如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点,然后从1→2为第二次“移位”.若小宇从编号为4的顶点开始,第2020次“移位”后,则他所处顶点的编号为( ).
A.2B.3C.4D.5
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是( )
A. △ABD和△CDB的面积相等B. △ABD和△CDB的周长相等
C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,中心为点C正方形的各边分别与两坐标轴平行,若点P是与C不重合的点,点P关于正方形的仿射点Q的定义如下:设射线CP交正方形的边于点M,若射线CP上存在一点Q,满足CP+CQ=2CM,则称Q为点P关于正方形的仿射点如图为点P关于正方形的仿射点Q的示意图.
特别地,当点P与中心C重合时,规定CP=0.
(1)当正方形的中心为原点O,边长为2时.
①分别判断点F(2,0),G(,),H(3,3)关于该正方形的仿射点是否存在?若存在,直接写出其仿射点的坐标;
②若点P在直线y=﹣x+3上,且点P关于该正方形的仿射点Q存在,求点P的横坐标的取值范围;
(2)若正方形的中心C在x轴上,边长为2,直线y=与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于该正方形的仿射点Q在正方形的内部,直接写出正方形的中心C的横坐标的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E、 F为AB上的一点,CF⊥AD于H,下列判断正确的有( )
A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线
C.AH为△ABC的角平分线D.CH为△ACD边AD上的高
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,在等腰△ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边△ACE,直线BE交直线AD于点F.如图,60°≤∠BAC≤120°,△ACF与△ABC在直线AC的同侧.
(1)①补全图形;
②∠EAF+∠CEF= ;
(2)猜想线段FA,FB,FE的数量关系,并证明你的结论;
(3)若BC=2,则AF的最大值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=ax2﹣(2a+1)x+c(a>0)的图象经过坐标原点O,一次函数y=﹣x+4与x轴、y轴分别交于点A、B.
(1)c= ,点A的坐标为 ;
(2)若二次函数y=ax2﹣(2a+1)x+c的图象经过点A,求a的值;
(3)若二次函数y=ax2﹣(2a+1)x+c的图象与△AOB只有一个公共点,直接写出a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com