相关习题
 0  360253  360261  360267  360271  360277  360279  360283  360289  360291  360297  360303  360307  360309  360313  360319  360321  360327  360331  360333  360337  360339  360343  360345  360347  360348  360349  360351  360352  360353  360355  360357  360361  360363  360367  360369  360373  360379  360381  360387  360391  360393  360397  360403  360409  360411  360417  360421  360423  360429  360433  360439  360447  366461 

科目: 来源: 题型:

【题目】如图,将△ABC绕顶点C逆时针旋转得到△ABC,且点B刚好落在AB′上,若∠A=25°,∠BCA′=45°,求∠ABA的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】等边三角形ABC内有一点P,连接APBPCP,若∠BPC=150°,BP=3,AP=5,则CP_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在一张长为8cm,宽为6cm的长方形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与长方形的一个顶点重合,其余的两个顶点在长方形的边上).则剪下的等腰三角形的底边长可以是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,AB=6,BC=4,若ACAD,且∠ACD=60°,则对角线BD的长的最大值为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△ABC′,连接BB′,若AC′∥BB′,则∠CAB′的度数为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为(  )

A. (2.8,3.6) B. (﹣2.8,﹣3.6)

C. (3.8,2.6) D. (﹣3.8,﹣2.6)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .

(1)求抛物线的解析式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;

(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,CD是⊙O的切线,点C在直径AB的延长线上.

(1)求证:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),Pt之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Qt之间满足如下关系:Q=

(1)当8<t≤24时,求P关于t的函数解析式;

(2)设第t个月销售该原料药的月毛利润为w(单位:万元)

①求w关于t的函数解析式;

②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).

(1)小红摸出标有数3的小球的概率是多少?.

(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.

(3)求点P(x,y)在函数y=﹣x+5图象上的概率.

查看答案和解析>>

同步练习册答案