相关习题
 0  360306  360314  360320  360324  360330  360332  360336  360342  360344  360350  360356  360360  360362  360366  360372  360374  360380  360384  360386  360390  360392  360396  360398  360400  360401  360402  360404  360405  360406  360408  360410  360414  360416  360420  360422  360426  360432  360434  360440  360444  360446  360450  360456  360462  360464  360470  360474  360476  360482  360486  360492  360500  366461 

科目: 来源: 题型:

【题目】已知y=y1+y2其中y1x成反比例,y2与(x﹣2)成正比例.当x=1时,y=﹣1;x=3时,y=3.求:

(1)yx的函数关系式;

(2)当x=﹣1时,y的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.

查看答案和解析>>

科目: 来源: 题型:

【题目】某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )

A. 该村人均耕地面积随总人口的增多而增多

B. 该村人均耕地面积y与总人口x成正比例

C. 若该村人均耕地面积为2公顷,则总人口有100人

D. 当该村总人口为50人时,人均耕地面积为1公顷

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线与反比例函数的图像在第一象限有一个公共点,其横坐标为1,则一次函数的图像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目: 来源: 题型:

【题目】为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:

(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?

(2)请把条形统计图补充完整;

(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】·假期,某公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图,

根据统计图回答下列问题:

(1)前往 A地的车票有_______ _张,前往C地的车票占全部车票的________%;

(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为___ ____;

(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.试用列表法或画树状图的方法分析,这个规则对双方是否公平?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.

(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?

(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】ABC是等边三角形,点D是射线BC上的一个动点(D不与点BC重合),△ADE是以AD为边的等边三角形,过点EBC的平行线,交射线AC于点G,连接BE

1)如图1所示,当点D在线段BC上时,求证:四边形BCGE是平行四边形;

2)如图2所示,当点DBC的延长线上时,(1)中的结论是否成立?并请说明理由;

3)当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)

(1)若顾客选择方式一,则享受9折优惠的概率为多少

(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点A(3,﹣6)是二次函数y=ax2上的一点,则这二次函数的解析式是

【答案】y=﹣x2

【解析】

试题分析:将点A(3,﹣6)代入y=ax2,利用待定系数法法求该二次函数的解析式即可﹣6=9a

解得a=﹣因此该二次函数的解析式为:y=﹣x2

考点:待定系数法求二次函数解析式

型】填空
束】
15

【题目】在一个不透明的口袋中装有8个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在40%附近,则口袋中白球可能有________

查看答案和解析>>

同步练习册答案