相关习题
 0  360367  360375  360381  360385  360391  360393  360397  360403  360405  360411  360417  360421  360423  360427  360433  360435  360441  360445  360447  360451  360453  360457  360459  360461  360462  360463  360465  360466  360467  360469  360471  360475  360477  360481  360483  360487  360493  360495  360501  360505  360507  360511  360517  360523  360525  360531  360535  360537  360543  360547  360553  360561  366461 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+2分别交x轴、y轴于点AB.点C的坐标是(﹣1,0),抛物线yax2+bx﹣2经过AC两点且交y轴于点D.点Px轴上一点,过点Px轴的垂线交直线AB于点M,交抛物线于点Q,连结DQ,设点P的横坐标为mm≠0).

(1)求点A的坐标.

(2)求抛物线的表达式.

(3)当以BDQM为顶点的四边形是平行四边形时,求m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)证明原方程有两个不相等的实数根;

(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x1﹣x2|)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数yx2x

(1)在平面直角坐标系内,画出该二次函数的图象;

(2)根据图象写出:x   时,y>0;

0<x<4时,y的取值范围为   

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线y=ax2+bx+ca≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣30)和(﹣20)之间,其部分图象如图,则下列结论:①4ac﹣b202a﹣b=0a+b+c0④点Mx1y1)、Nx2y2)在抛物线上,若x1x2﹣1,则y1y2abc0.其中正确结论的个数是(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】作出反比例函数y=-的图象,并结合图象回答:(1)x2时,y的值;(2)1x≤4时,y的取值范围;(3)1≤y4时,x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m。设AD的长为xm,DC的长为ym。

(1)求y与x之间的函数关系式;

(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是米数,求出满足条件的所有围建方案。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.

(1)求函数y=y=kx+b的解析式;

(2)已知直线ABx轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得SPOC=9.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=-x+3y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点CCBx轴于点B,AO=3BO,则反比例函数的解析式为( )

A. y= B. y=- C. y= D. y=-

查看答案和解析>>

科目: 来源: 题型:

【题目】某课桌生产厂家研究发现,倾斜12°24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CDAC30 cm.

(1)如图2,当∠BAC24°时,CDAB,求支撑臂CD的长;

(2)如图3,当∠BAC12°时,求AD的长.(结果保留根号)

(参考数据:sin 24°≈0.40cos 24°≈0.91tan 24°≈0.46sin 12°≈0.20)

查看答案和解析>>

科目: 来源: 题型:

【题目】同学们,在我们进入高中以后,将还会学到下面三角函数公式:

sin (αβ)sinαcosβcosαsinβ

cos (αβ)cosαcosβsinαsinβ

例:sin 15°sin (45°30°)sin 45°cos 30°cos 45°sin 30°

(1)试仿照例题,求出cos 15°的准确值;

(2)我们知道,tanα,试求出tan 15°的准确值.

查看答案和解析>>

同步练习册答案