相关习题
 0  360531  360539  360545  360549  360555  360557  360561  360567  360569  360575  360581  360585  360587  360591  360597  360599  360605  360609  360611  360615  360617  360621  360623  360625  360626  360627  360629  360630  360631  360633  360635  360639  360641  360645  360647  360651  360657  360659  360665  360669  360671  360675  360681  360687  360689  360695  360699  360701  360707  360711  360717  360725  366461 

科目: 来源: 题型:

【题目】已知:如图,反比例函数的图象经过点AP,点A6),点P的横坐标是2.抛物线yax2+bx+ca≠0)经过坐标原点,且与x轴交于点B,顶点为P

求:(1)反比例函数的解析式;

2)抛物线的表达式及B点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点A是反比例函数y与一次函数y=﹣xk在第二象限内的交点,ABx轴于点B,且SABO3

1)求这两个函数的表达式;

2)求一次函数与反比例函数的两个交点AC的坐标和AOC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正比例函数ykx与反比例函数yx0)的图象有个交点AABx轴于点B.平移正比例函数ykx的图象,使其经过点B20),得到直线l,直线ly交于点C0,﹣3

1)求km的值;

2)点M是直线OA上一点过点MMNAB,交反比例函数yx0)的图象于点N,若线段MN3,求点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.

(1)求一次函数与反比例函数的解析式;

(2)求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点A在双曲线yx0)上,点B在双曲线yx0)上,且ABx轴,BCy轴,点Cx轴上,则ABC的面积为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,RtABC的直角边BCx轴负半轴上,斜边AC上的中线BD的反向延长线交y轴负半轴于点E,反比例函数y=﹣x0)的图象过点A,则BEC的面积是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点AB是反比例函数yk≠0)图象上的两点,延长线段ABy 轴于点C,且点B为线段AC中点,过点AADx轴子点D,点E 为线段OD的三等分点,且OEDE.连接AEBE,若SABE7,则k的值为(  )

A. 12 B. 10 C. 9 D. 6

查看答案和解析>>

科目: 来源: 题型:

【题目】对于反比例函数yk≠0),下列所给的四个结论中,正确的是(  )

A. 若点(24)在其图象上,则(﹣24)也在其图象上

B. k0时,yx的增大而减小

C. 过图象上任一点Px轴、y轴的垂线,垂足分别AB,则矩形OAPB的面积为k

D. 反比例函数的图象关于直线yxy=﹣x成轴对称

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数与反比例函数的图象交于点A13),B31)两点,当一次函数大于反比例函数的值时,x的取值范围是(  )

A. x1 B. 1x3 C. x3 D. x4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

同步练习册答案