相关习题
 0  360755  360763  360769  360773  360779  360781  360785  360791  360793  360799  360805  360809  360811  360815  360821  360823  360829  360833  360835  360839  360841  360845  360847  360849  360850  360851  360853  360854  360855  360857  360859  360863  360865  360869  360871  360875  360881  360883  360889  360893  360895  360899  360905  360911  360913  360919  360923  360925  360931  360935  360941  360949  366461 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,直角三角形OBD的直角顶点Dx轴正半轴上,B在第一象限,OBtanBOD2

(1)求图象经过点B的反比例函数的解析式.

(2)E(1)中反比例函数图象上一点,连接BEDE,若BEDE,求四边形OBED的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:祖冲之奖刘徽奖赵爽奖杨辉奖,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获祖冲之奖的学生成绩统计表:

祖冲之奖的学生成绩统计表:

分数

80

85

90

95

人数

4

2

10

4

根据图表中的信息,解答下列问题:

这次获得刘徽奖的人数是多少,并将条形统计图补充完整;

获得祖冲之奖的学生成绩的中位数是多少分,众数是多少分;

在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点用列表法或树状图法求这个点在第二象限的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】小婷在放学路上,看到隧道上方有一块宣传中国﹣南亚博览会的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)

查看答案和解析>>

科目: 来源: 题型:

【题目】尺规作图:

已知:∠AOB

求作:射线OC,使它平分∠AOB

作法:

1)以O为圆心,任意长为半径作弧,交OAD,交OBE

2)分别以DE为圆心,大于DE的同样长为半径作弧,两弧相交于点C

3)作射线OC

所以射线OC就是所求作的射线.

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:连结CECD

OEOD      OCOC

∴△OEC≌△ODC(依据:   ),

∴∠EOC=∠DOC

OC平分∠AOB

查看答案和解析>>

科目: 来源: 题型:

【题目】将矩形OABC置于平面直角坐标系中,点A的坐标为(04),点C的坐标为(m0)(m0),点D(m1)BC上,将矩形OABC沿AD折叠压平,使点B的对应点E落在坐标平面内,当△ADE是等腰直角三角形时,点E的坐标为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB为⊙O的弦,C为弦AB上一点,设AC=mBC=nmn),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2n2)π,则=_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EBED;③折叠后得到的图形是轴对称图形;④折叠后∠ABE和∠CBD一定相等;其中正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:在平面直角坐标系中,直线l:y=x﹣x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=

(1)求抛物线的解析式;

(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PBx轴于点B,PCy轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PEPF;

(3)若(2)中的点P坐标为(6,2),点Ex轴上的点,点Fy轴上的点,当PEPF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,将两个完全相同的三角形纸片ABCDEC重合放置,其中C=900B=E=300.

1)操作发现如图2,固定ABC,使DEC绕点C旋转。当点D恰好落在BC边上时,填空:线段DEAC的位置关系是

BDC的面积为S1AEC的面积为S2。则S1S2的数量关系是

2)猜想论证

DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1S2的数量关系仍然成立,并尝试分别作出了BDCAECBCCE边上的高,请你证明小明的猜想。

3)拓展探究

已知ABC=600D是其角平分线上一点,BD=CD=4OEABBC于点E(如图4),若在射线BA上存在点F,使SDCF =SBDC,直接写出相应的BF的长

查看答案和解析>>

同步练习册答案