科目: 来源: 题型:
【题目】如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=( )
A.2B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形中,.点从点出发,沿方向匀速运动,速度为同时,点从点出发,沿方向匀速运动,速度为.过点作交于点,连接,交于点.设运动时间为.解答下列问题:
(1)当为何值时,?
(2)设五边形的面积为, 求与的函数关系式;
(3)连接.是否存在某一时刻, 使点在的垂直平分线上,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(问题)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(2×n矩形表示矩形的邻边是2和n)
(探究)不妨假设有an种不同的镶嵌方案.为探究an的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.
探究一:用1个2×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?
如图(1),显然只有1种镶嵌方案.所以,a1=1.
探究二:用2个2×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?
如图(2),显然只有2种镶嵌方案.所以,a2=2.
探究三:用3个2×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?
一类:在探究一每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有1种镶嵌方案;
二类:在探究二每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有2种镶嵌方案;
如图(3).所以,a3=1+2=3.
探究四:用4个2×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?
一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有 种镶嵌方案;
二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有 种镶嵌方案;
所以,a4= .
探究五:用5个2×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?
(仿照上述方法,写出探究过程,不用画图)
……
(结论)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?
(直接写出an与an﹣1,an﹣2的关系式,不写解答过程).
(应用)用10个2×1矩形,镶嵌一个2×10矩形,有 种不同的镶嵌方案.
查看答案和解析>>
科目: 来源: 题型:
【题目】某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,日销售量,日销售利润的几组对应值如表:
销售单价x(元) | 85 | 95 | 105 | 115 |
日销售量y(个) | 175 | 125 | 75 | 25 |
日销售利润w(元) | 875 | 1875 | 1875 | 875 |
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y与x的函数关系式;
(2)当销售单价x为多少元时,日销售利润w最大?最大利润是多少元?
(3)当销售单价x为多少元时,日销售利润w在1500元以上?(请直接写出x的范围)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.
(1)求证:△BDF≌△CDE;
(2)当ED与BC满足什么数量关系时,四边形BECF是正方形?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某幼儿园购买了A,B两种型号的玩具,A型玩具的单价比B型玩具的单价少9元,已知该幼儿园用了3120元购买A型玩具的件数与用4200元购买B型玩具的件数相等.
(1)该幼儿园购买的A,B型玩具的单价各是多少元?
(2)若A,B两种型号的玩具共购买200件,且A型玩具数量不多于B型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上(如图所示).该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为45°,平面镜E的俯角为67°,测得FD=2.4米.求旗杆AB的高度约为多少米?(结果保留整数,参考数据:sin67°≈,cos67°≈,tan67°≈)
查看答案和解析>>
科目: 来源: 题型:
【题目】每到春夏交替时节,杨树的杨絮漫天飞舞,易引发皮肤病、呼吸道疾病等,给人们生活造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(调查问卷如下),并根据调查结果绘制了如下尚不完整的统计图:
调查问卷
治理杨絮:您选哪一项? (每人只选一项)
A.减少杨树新增面积,控制杨树每年的栽种量;
B.调整树种结构,逐渐更换现有杨树;
C.选育无絮杨品种,并推广种植;
D.对杨树注射生物干扰素,避免产生飞絮;
E.其他.
根据以上信息,解答下列问题:
(1)在扇形统计图中,求扇形的圆心角度数;
(2)补全条形统计图;
(3)若该市约有万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知等边三角形,顶点在双曲线上,点的坐标为.过作交双曲线于点,过作交轴于点,得到第二个等边;过作交双曲线于点,过作交轴于点,得到第三个等边;以此类推,... 则点的坐标为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com