科目: 来源: 题型:
【题目】如图,在平面直角坐标系 xOy中,反比例函数 y
x 0 的图象经过点 A2,3 ,直线y ax , y
与反比例函数 y
x 0 分别交于点 B,C两点.
(1)直接写出 k 的值 ;
(2)由线段 OB,OC和函数 y
x 0 在 B,C 之间的部分围成的区域(不含边界)为 W.
① 当 A点与 B点重合时,直接写出区域 W 内的整点个数 ;
② 若区域 W内恰有 8个整点,结合函数图象,直接写出 a的取值范围 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C = 90°,点O是斜边AB上一定点,到点O的距离等于OB的所有点组成图形W,图形W与AB,BC分别交于点D,E,连接AE,DE,∠AED=∠B.
![]()
(1)判断图形W与AE所在直线的公共点个数,并证明.
(2)若
,
,求OB.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是小元设计的“过圆上一点作圆的切线”的尺规作图过程.
已知:如图,⊙O及⊙O上一点P.
求作:过点P的⊙O的切线.
![]()
![]()
作法:如图,
①作射线OP;
②在直线OP外任取一点A,以点A为圆心,AP为半径作⊙A,与射线OP交于另一点B;
③连接并延长BA与⊙A交于点C;
④作直线PC;
则直线PC即为所求.
根据小元设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:∵ BC是⊙A的直径,
∴∠BPC=90°(____________)(填推理的依据).
∴OP⊥PC.
又∵OP是⊙O的半径,
∴PC是⊙O的切线(____________)(填推理的依据).
查看答案和解析>>
科目: 来源: 题型:
【题目】对于平面直角坐标系
中的动点
和图形
,给出如下定义:如果
为图形
上一个动点,
,
两点间距离的最大值为
,
,
两点间距离的最小值为
,我们把
的值叫点
和图形
间的“和距离”,记作
(
,图形
).
(1)如图,正方形
的中心为点
,
.
![]()
①点
到线段
的“和距离”
(
,线段
)=______;
②设该正方形与
轴交于点
和
,点
在线段
上,
(
,正方形
)=7,求点
的坐标.
(2)如图2,在(1)的条件下,过
,
两点作射线
,连接
,点
是射线
上的一个动点,如果
(
,线段
)
,直接写出
点横坐标
取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE,连接DE并延长交射线AP于点F,连接BF
![]()
(1)若
,直接写出
的大小(用含
的式子表示).
(2)求证:
.
(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a≠0)与y轴交于点A,将点A向右平移2个单位长度,得到点B.直线
与x轴,y轴分别交于点C,D.
(1)求抛物线的对称轴.
(2)若点A与点D关于x轴对称.
①求点B的坐标.
②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点
是
上(除点
外)一点,以
为边作等边
,与
交于两点.记
的长为
,点
到
的距离为
,点
到
的距离为
:
![]()
小腾根据学习函数的经验,对
,
,
的长度之间的关系进行了探究.
下面是小腾的探究过程,请补充完整:
(1)对于点
在
上的不同位置,画图、测量,得到了
,
,
的长度几组值,如下表:
![]()
在
,
,
的长度这三个量中,确定 是自变量, 和 都是这个自变量的函数;
(2)在同一平面直角坐标系
中,画出(1)中所确定的函数的图像;
(3)结合函数图像,解决问题:当点
在
平分线上时,
的长约为 cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com