科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为___________.
查看答案和解析>>
科目: 来源: 题型:
【题目】一张三角形纸片ABC,其中∠C=90,AC=6,BC=8.小静同学将纸片做两次折叠:第一次使点A落在C处,折痕记为m;然后将纸片展平做第二次折叠,使点A落在B处,折痕记为n.则m,n的大小关系是_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点A,B,C,D在⊙O上,弦AD的延长线与弦BC的延长线相交于点E.用①AB是⊙O的直径,②CB=CE,③AB=AE中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面内,对于给定的,如果存在一个半圆或优弧与的两边相切,且该弧上的所有点都在的内部或边上,则称这样的弧为的内切弧.当内切弧的半径最大时,称该内切弧为的完美内切弧.(注:弧的半径指该弧所在圆的半径)
在平面直角坐标系中,.
(1)如图1,在弧,弧,弧中,是的内切弧的是____________;
(2)如图2,若弧G为的内切弧,且弧G与边相切,求弧G的半径的最大值;
(3)如图3,动点,连接.
①直接写出的完美内切弧的半径的最大值;
②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线于点D,E,点F为线段的中点,直接写出线段长度的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,等边三角形中,D为边上一点,满足,连接,以点A为中心,将射线顺时针旋转60°,与的外角平分线交于点E.
(1)依题意补全图1;
(2)求证:;
(3)若点B关于直线的对称点为F,连接.
①求证:;
②若成立,直接写出的度数为_________°.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知二次函数的图象与x轴交于点,与y轴交于点B,将其图象在点A,B之间的部分(含A,B两点)记为F.
(1)求点B的坐标及该函数的表达式;
(2)若二次函数的图象与F只有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在四边形中,对角线平分.为了研究图中线段之间的数量关系,设.
(1)由题意可得,(在括号内填入图1中相应的线段)y关于x的函数表达式为________;
(2)如图2,在平面直角坐标系中,根据(1)中y关于x的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;
(3)结合函数图象,解决问题:
①写出该函数的一条性质:__________________________;
②估计的最小值为__________.(结果精确到0.1)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,函数的图象与直线交于点.M是函数图象上一点,过M作x轴的平行线交直线于点N.
(1)求k和p的值;
(2)设点M的横坐标为m.
①求点N的坐标;(用含m的代数式表示)
②若的面积大于,结合图象直接写出m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.
图1反映了2014—2019年我国生活垃圾清运量的情况.
图2反映了2019年我国G市生活垃圾分类的情况.
根据以上材料回答下列问题:
(1)图2中,n的值为___________;
(2)2014—2019年,我国生活垃圾清运量的中位数是_________;
(3)据统计,2019年G市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G市的占比相同,根据G市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线,使得.
作法:如图,
①在直线l外取一点A,作射线与直线l交于点B,
②以A为圆心,为半径画弧与直线l交于点C,连接,
③以A为圆心,为半径画弧与线段交于点,
则直线即为所求.
根据小王设计的尺规作图过程,,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵,
∴,(______________________)(填推理的依据).
∵__________,
∴.
∵,
∴.
∴(____________________)(填推理的依据).
即.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com