相关习题
 0  362594  362602  362608  362612  362618  362620  362624  362630  362632  362638  362644  362648  362650  362654  362660  362662  362668  362672  362674  362678  362680  362684  362686  362688  362689  362690  362692  362693  362694  362696  362698  362702  362704  362708  362710  362714  362720  362722  362728  362732  362734  362738  362744  362750  362752  362758  362762  362764  362770  362774  362780  362788  366461 

科目: 来源: 题型:

【题目】如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P上一动点,延长BP至点Q,使BPBQ=AB2.若点PA运动到C,则点Q运动的路径长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,小聪用一张面积为1的正方形纸片,按如下方式操作:

①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;

②在余下纸片上依次重复以上操作,

当完成第2020次操作时,余下纸片的面积为(

A.22019B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】若点A(1y1)B(2y2)C(3y3)在反比例函数yk0)的图象上.则y1y2y3的大小关系是(

A.y1y2y3B.y3y2y1C.y2y3y1D.y1y3y2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线与x轴交于AB两点,与y轴交于点C0,﹣2),点A的坐标是(20),P为抛物线上的一个动点,过点PPDx轴于点D,交直线BC于点E,抛物线的对称轴是直线x=﹣1

1)求抛物线的函数表达式;

2)若点P在第二象限内,且PEOD,求△PBE的面积.

3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点AAHDG,交BG于点H.连接HFAF,其中AFEC于点M

1)求证:△AHF为等腰直角三角形.

2)若AB3EC5,求EM的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:有一组邻边相等且对角互补的四边形叫做等补四边形.

理解:

如图1,点上,的平分线交于点,连接求证:四边形是等补四边形;

探究:

如图2,在等补四边形连接是否平分请说明理由.

运用:

如图3,在等补四边形中,,其外角的平分线交的延长线于点的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了加快智慧校园建设,某市准备为试点学校采购一批两种型号的一体机,经过市场调查发现,今年每套型一体机的价格比每套型一体机的价格多0.6万元,且用960万元恰好能购买500型一体机和200型一体机.

1)求今年每套型、型一体机的价格各是多少万元

2)该市明年计划采购型、型一体机1100套,考虑物价因素,预计明年每套型一体机的价格比今年上涨25%,每套型一体机的价格不变,若购买型一体机的总费用不低于购买型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?

查看答案和解析>>

科目: 来源: 题型:

【题目】某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:

(1)本次随机调查了多少名学生?

(2)补全条形统计图中“书画”、“戏曲”的空缺部分;

(3)若该校共有名学生,请估计全校学生选择“戏曲”类的人数;

(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字幕表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC与△AEF中,ABAEBCEF,∠B=∠EABEFD.给出下列结论:AFC=∠CDFBFADE∽△FDBBFD=∠CAF.其中正确的结论是_____(填写所有正确结论的序号).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线经过点和点,顶点为

1)求的值;

2)若的坐标为,当时,二次函数有最大值,求的值;

3)直线与直线、直线分别相交于,若抛物线与线段(包含两点)有两个公共点,求的取值范围.

查看答案和解析>>

同步练习册答案