科目: 来源: 题型:
【题目】如图,一次函数的图像与反比例函数的图像交于,两点,与轴分别交于两点,且.
(1)求一次函数和反比例函数的解析式;
(2)若点与点关于轴对称,连接,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了落实党的“精准扶贫”政策,A、B两城决定向C,D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨:从B城往C,D两乡运肥料的费用分别为15元/吨和24元/吨,现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求y与x的函数关系式.
(3)怎样调运才能使总运费最少?并求最少运费.
查看答案和解析>>
科目: 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,AB=AC,点E、F、G分别在边BC、CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
(1)求证:△AEH≌△AGH;
(2)当AB=12,BE=4时:
①求△DGH周长的最小值;
②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.
(1)求圆C的标准方程;
(2)试判断直线AE与圆C的位置关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.
(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;
(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中.BC边的长为x,BC边上的高为y,△ABC的面积为2.
(1)y关于x的函数关系式是________, x的取值范围是________;
(2)在平面直角坐标系中画出该函数图象;
(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点P在BC上.
(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校举行了“防溺水”知识竞赛,八年级两个班选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).
(1)统计表中,a=________, b =________;
(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额 在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com