科目: 来源: 题型:
【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE-ED-DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(),已知y与t之间的函数图象如图2所示.
给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②=48;③当14<t<22时,y=110-5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.
其中正确结论的序号是_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=,∠EAF=135°,则下列结论正确的是( )
A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在Rt△ABC中,∠C﹦90°,AC﹦6,∠B﹦30°,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,同时动点Q从点C开始沿边CB向点B以每秒个单位长度的速度运动,当其中一点到达端点时,另一点也随之停止运动.过点P作PD∥BC,交A于点D,连接PQ.设运动时间为t秒(t ≥0).
(1)直接用含t的代数式分别表示QB、PD、BD的长度:QB﹦ ;PD﹦ ;BD﹦ .
(2)当t取何值时,若四边形PDBQ是平行四边形?
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,请说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度;
(4)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.在整个运动过程中,线段PQ的中点M(x,y)会在一个固定的函数图像上运动.则
①该函数解析式为 ;②自变量x的取值范围是 ;③点M所经过的路径长等于 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知□ABCD的两边AB、BC的长是关于x的一元二次方程方程的两个实数根.
(1)试说明:无论m取何值,原方程总有两个实数根;
(2)当m为何值时,□ABCD是菱形?求出这时菱形的边长;
(3)若AB﹦2,求BC的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,EF是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块.若要围成的矩形面积为60平方米,求AD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.
(1)求证:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com