相关习题
 0  363675  363683  363689  363693  363699  363701  363705  363711  363713  363719  363725  363729  363731  363735  363741  363743  363749  363753  363755  363759  363761  363765  363767  363769  363770  363771  363773  363774  363775  363777  363779  363783  363785  363789  363791  363795  363801  363803  363809  363813  363815  363819  363825  363831  363833  363839  363843  363845  363851  363855  363861  363869  366461 

科目: 来源: 题型:

【题目】如图,O为矩形ABCD对角线的交点,DEAC,CEBD.

1)试判断四边形OCED的形状,并说明理由;

2)若∠DOC = 60°BC = 6,求矩形ABCD的对角线长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程

(1)(2x1)225;

(2)x24x10

(3)3x(x2)2(2x)

(4)x28x120

查看答案和解析>>

科目: 来源: 题型:

【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线x轴交于AB两点,与y轴交于C点,B点与C点是直线yx3x轴、y轴的交点.D为线段AB上一点.

1)求抛物线的解析式及A点坐标.

2)若点D在线段OB上,过D点作x轴的垂线与抛物线交于点E,求出点E到直线BC的距离的最大值.

3D为线段AB上一点,连接CD,作点B关于CD的对称点B,连接ABBD

当点B落坐标轴上时,求点D的坐标.

在点D的运动过程中,ABD的内角能否等于45°,若能,求此时点B的坐标;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么我们称抛物线C1C2关联.

1)已知抛物线C1y=﹣2x2+4x+3C2y2x2+4x1,请判断抛物线C1与抛物线C2是否关联,并说明理由.

2)抛物线C1,动点P的坐标为(t2),将抛物线绕点P旋转180°得到抛物线C2,若抛物线C1C2关联,求抛物线C2的解析式.

3)点A为抛物线C1的顶点,点B为抛物线C1关联的抛物线的顶点,是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在直线x=﹣10上?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为满足市场需求,某超市在五月初五端午节来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.

1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;

2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?

3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣5x+5x轴、y轴分别交于AC两点,抛物线yx2+bx+c经过AC两点,与x轴交于另一点B

1)求抛物线解析式及B点坐标;

2x2+bx+c5x+5的解集   

3)若点M在第一象限内抛物线上一动点,连接MAMB,当点M运动到某一位置时,ABM面积为ABC的面积的倍,求此时点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次羽毛球赛中,甲运动员在离地面米的P点处发球,球的运动轨迹PAN看作一个抛物线的一部分,当球运动到最高点A时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为原点建立如图所示的坐标系,乙运动员站立地点M的坐标为(m0.

1)求抛物线的解析式(不要求写自变量的取值范围);

2)求羽毛球落地点N离球网的水平距离(即NC的长);

3)乙原地起跳后可接球的最大高度为2.4米,若乙因为接球高度不够而失球,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据下列条件,求二次函数的解析式.

1)图象经过(01),(1,﹣2),(23)三点;

2)图象的顶点(23),且经过点(31);

查看答案和解析>>

同步练习册答案