相关习题
 0  363885  363893  363899  363903  363909  363911  363915  363921  363923  363929  363935  363939  363941  363945  363951  363953  363959  363963  363965  363969  363971  363975  363977  363979  363980  363981  363983  363984  363985  363987  363989  363993  363995  363999  364001  364005  364011  364013  364019  364023  364025  364029  364035  364041  364043  364049  364053  364055  364061  364065  364071  364079  366461 

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线.

(1)求抛物线的对称轴(用含的式子去表示)

(2)若点都在抛物线上,则的大小关系为_______

(3)直线轴交于点,与轴交于点,过点作垂直于轴的直线与抛物线有两个交点,在抛物线对称轴右侧的点记为,当为钝角三角形时,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】下面是小华设计的作一个角等于已知角的2的尺规作图过程.

已知:

求作:,使得

作法:如图,

①在射线上任取一点

②作线段的垂直平分线,交于点,交于点

③连接

所以即为所求作的角.

根据小华设计的尺规作图过程,

(1)使用直尺和圆规补全图形(保留作图痕迹)

(2)完成下面的证明(说明:括号里填写推理的依据)

证明:∵是线段的垂直平分线,

______(______)

(______)

查看答案和解析>>

科目: 来源: 题型:

【题目】某农科所在相同条件下做某作物种子发芽率的实验,结果如表所示:

种子个数

200

300

500

700

800

900

1000

发芽种子个数

187

282

435

624

718

814

901

发芽种子频率

0.935

0.940

0.870

0.891

0.898

0.904

0.901

下面有四个推断:①种子个数是700时,发芽种子的个数是624.所以种子发芽的概率是0.891;②随着参加实验的种子数量的增加,发芽种子的频率在0.9附近摆动,显示出一定的稳定性.可以估计种子发芽的概率约为0.9(精确到0.1);③实验的种子个数最多的那次实验得到的发芽种子的频率一定是种子发芽的概率;④若用频率估计种子发芽的概率约为0.9,则可以估计种子大约有的种子不能发芽.其中合理的是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

科目: 来源: 题型:

【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):

步数

频数

频率

0≤x<4000

8

a

4000≤x<8000

15

0.3

8000≤x<12000

12

b

12000≤x<16000

c

0.2

16000≤x<20000

3

0.06

20000≤x<24000

d

0.04

请根据以上信息,解答下列问题:

(1)写出a,b,c,d的值并补全频数分布直方图;

(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?

(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线分别交轴、轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC 轴于点C,交抛物线于点D.

(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.

①求点M、N的坐标;

②是否存在点P,使四边形MNPD为菱形?并说明理由;

(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.

(1)当t=秒时,点Q的坐标是   

(2)在运动过程中,设正方形PQMNAOB重叠部分的面积为S,求St的函数表达式;

(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知半圆与四边形的边都相切,切点分别为,半径,则___________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的ALMN,若中间空白部分四边形OPQR恰好是正方形,且ALMN的面积为50,则正方形EFGH的面积为(  )

A. 24 B. 25 C. 26 D. 27

查看答案和解析>>

科目: 来源: 题型:

【题目】为了帮助市内一名患白血病的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是(  )

捐款数额

10

20

30

50

100

人数

2

4

5

3

1

A. 众数是100 B. 中位数是30 C. 极差是20 D. 平均数是30

查看答案和解析>>

同步练习册答案