相关习题
 0  364685  364693  364699  364703  364709  364711  364715  364721  364723  364729  364735  364739  364741  364745  364751  364753  364759  364763  364765  364769  364771  364775  364777  364779  364780  364781  364783  364784  364785  364787  364789  364793  364795  364799  364801  364805  364811  364813  364819  364823  364825  364829  364835  364841  364843  364849  364853  364855  364861  364865  364871  364879  366461 

科目: 来源: 题型:

【题目】已知如图:为测量一个圆的半径,采用了下面的方法:将圆平放在一个平面上,用一个含有30°角的三角板和一把无刻度的直尺,按图示的方式测量(此时,⊙O与三角板和直尺分别相切,切点分别为点C、点B),若量得AB5cm,试求圆的半径以及的弧长.

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程

1x2+2x0

22x22x10

31

查看答案和解析>>

科目: 来源: 题型:

【题目】近年来,我国长江、黄河流域植被遭到破坏,导致土地沙化,洪涝灾害时有发生、沿黄某地区为积极响应和支持保护母亲河的倡议,在2000年建立了长100km,宽0.5km的防护林、今年,有关部门为统计这一防护林约有多少棵树,从中选出10块(每块长1km,宽0.5km)统计,数量如下(单位:棵):65110 63200 64600 64700 67300 63300 65100 66600 62800 65500,根据以上数据可知这一防护林约有_____棵树.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC的顶点A的坐标为(﹣34).

1)画出ABC关于y轴的对称图形A1B1C1,并写出A1的坐标;

2)画出将ABC绕原点O逆时针方向旋转90°得到的A2B2C2,并写出A2的坐标;

3)求出(2)中点A所经过的路径的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】临近期末考试,心理专家建议考生可通过以下四种方式进行考前减压:.享受美食,.交流谈心,.体育锻炼,.欣赏艺术.

1)随机采访一名九年级考生,选择其中某一种方式,他选择“享受美食”的概率是

2)同时采访两名九年级考生,请用画树状图或列表的方法求他们中至少有一人选择“欣赏艺术”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB⊙O 的直径,CD⊙O的一条弦,且CD⊥AB于点E

1)求证:∠BCO=∠D

2)若CD=AE=2,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

40

50

60

销售量y(千克)

100

80

60

(1)求yx之间的函数表达式;

(2)设商品每天的总利润为W(元),求Wx之间的函数表达式(利润=收入成本);

(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A

1)判断直线MN⊙O的位置关系,并说明理由;

2)若OA=4∠BCM=60°,求图中阴影部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】将两块斜边长相等的等腰直角三角板按如图①摆放斜边AB分别交CD,CE于M,N点.

(1)如果把图①中的△BCN绕点C逆时针旋转90°得到△ACF连接FM如图②,求证:△CMF≌△CMN;

(2)将△CED绕点C旋转则:

当点M,N在AB上(不与点A,B重合)时线段AM,MN,NB之间有一个不变的关系式请你写出这个关系式并说明理由;

当点M在AB上点N在AB的延长线上(如图③)时,①中的关系式是否仍然成立?

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为月牙线.如图,抛物线C1与抛物线C2组成一个开口向上的月牙线,抛物线C1与抛物线C2x轴有相同的交点MN(点M在点N的左侧),与y轴的交点分别为AB且点A的坐标为(0,﹣3),抛物线C2的解析式为ymx2+4mx12m,(m0).

1)请你根据月牙线的定义,设计一个开口向下.月牙线,直接写出两条抛物线的解析式;

2)求MN两点的坐标;

3)在第三象限内的抛物线C1上是否存在一点P,使得PAM的面积最大?若存在,求出PAM的面积的最大值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案