科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.
(1)该三角形的外接圆的半径长等于 ;
(2)用直尺和圆规作出该三角形的内切圆(不写作法,保留作图痕迹),并求出该三角形内切圆的半径长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学开展演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.
(1)根据图填写下表;
平均分 (分) | 中位数 (分) | 众数(分) | 极差 | 方差 | |
九(1)班 | 85 | ______ | 85 | ______ | 70 |
九(2)班 | 85 | 80 | ______ | ______ | ______ |
(2)结合两班复赛成绩的平均数和中位数、极差、方差,分析哪个班级的复赛成绩较好?
(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,为半圆的直径,交于,为延长线上一动点,为中点,,交半径于,连.下列结论:①;②;③;④为定值.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数的图象的顶点坐标为,直线与该二次函数的图象交于,两点,其中点的坐标为,点在轴上.是轴上的一个动点,过点作轴的垂线分别与直线和二次函数的图象交于,两点.
(1)求的值及这个二次函数的解析式;
(2)若点的横坐标,求的面积;
(3)当时,求线段的最大值;
(4)若直线与二次函数图象的对称轴交点为,问是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,请求出此时点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.
(1)求点M到地面的距离;
(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:1.73,结果精确到0.01米)
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为后放回,同样的乙也从中随机取出一个小球,记下数字为,这样确定了点的坐标.
(1)请用列表或画树状图的方法写出点所有可能的坐标;
(2)求点在函数的图象上的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知中,,的面积为42.
(1)如图,若点分别是边的中点,则四边形的面积是__________.
(2)如图,若图中所有的三角形均相似,其中最小的三角形面积为1,则四边形的面积是___________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(xk)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A. 球不会过网 B. 球会过球网但不会出界
C. 球会过球网并会出界 D. 无法确定
查看答案和解析>>
科目: 来源: 题型:
【题目】将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com