科目: 来源: 题型:
【题目】已知:抛物线y=2ax2﹣ax﹣3(a+1)与x轴交于点AB(点A在点B的左侧).
(1)不论a取何值,抛物线总经过第三象限内的一个定点C,请直接写出点C的坐标;
(2)如图,当AC⊥BC时,求a的值和AB的长;
(3)在(2)的条件下,若点P为抛物线在第四象限内的一个动点,点P的横坐标为h,过点P作PH⊥x轴于点H,交BC于点D,作PE∥AC交BC于点E,设△ADE的面积为S,请求出S与h的函数关系式,并求出S取得最大值时点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.
(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.
①请判断“匀称中线”是哪条边上的中线,
②求BC:AC:AB的值.
(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下列材料,关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……
(1)请观察上述方程与解的特征,比较关于x的方程x+=c+(a≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.
(2)可以直接利用(1)的结论,解关于x的方程:x+=a+.
查看答案和解析>>
科目: 来源: 题型:
【题目】在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:
类别 | 家庭藏书m本 | 学生人数 |
A | 0≤m≤25 | 20 |
B | 26≤m≤50 | a |
C | 51≤m≤75 | 50 |
D | m≥76 | 66 |
根据以上信息,解答下列问题:
(1)该调查的样本容量为 ,a= ;
(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是 ;
(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是 (3,4),反比例函数y=(k≠0)经过点C,则k的值为( )
A.12B.15C.20D.32
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①是由五个完全相同的小正方体组成的立体图形,将图①中的一个小正方体改变位置后如图②.则三视图发生改变的是( )
A.主视图B.俯视图
C.左视图D.主视图、俯视图和左视图
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
(1)求反比例函数的解析式;
(2)过点作轴的平行线,点在直线上运动,点在轴上运动.
①若是以为直角顶点的等腰直角三角形,求的面积;
②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
查看答案和解析>>
科目: 来源: 题型:
【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形为1阶准菱形.
(1)判断与推理:
① 邻边长分别为2和3的平行四边形是__________阶准菱形;
② 小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点在上)使点落在边上的点,得到四边形,请证明四边形是菱形.
(2)操作、探究与计算:
① 已知平行四边形的邻边分别为1,裁剪线的示意图,并在图形下方写出的值;
② 已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com