【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)利用尺规作图,在BC边上求作一点P,使得点P到边AB的距离等于PC的长;(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)
(2)在(1)的条件下,以点P为圆心,PC长为半径的⊙P中,⊙P与边BC相交于点D,若AC=6,PC=3,求BD的长.
【答案】(1)如图所示,见解析;(2)BD的长为2.
【解析】
(1)根据题意可知要作∠A的平分线,按尺规作图的要求作角平分线即可;
(2)由切线长定理得出AC=AE,设BD=x,BE=y,则BC=6+x,BP=3+x,通过△PEB∽△ACB可得出,从而建立一个关于x,y的方程,解方程即可得到BD的长度.
(1)如图所示:
作∠A的平分线交BC于点P,
点P即为所求作的点.
(2)作PE⊥AB于点E,则PE=PC=3,
∴AB与圆相切,
∵∠ACB=90°,
∴AC与圆相切,
∴AC=AE,
设BD=x,BE=y,
则BC=6+x,BP=3+x,
∵∠B=∠B,∠PEB=∠ACB,
∴△PEB∽△ACB
∴
∴
解得x=2,
答:BD的长为2.
科目:初中数学 来源: 题型:
【题目】如图,C地在A地的正东方向,因有大山阻隔,由A地到C地需要绕行B地,已知B地位于A地北偏东67°方向,距离A地520km,C地位于B地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A地到C地之间高铁线路的长(结果保留整数)(参考数据:sin67°≈0.92;cos67°≈0.38;≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,AD=5,AB=3.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①是由五个完全相同的小正方体组成的立体图形,将图①中的一个小正方体改变位置后如图②.则三视图发生改变的是( )
A.主视图B.俯视图
C.左视图D.主视图、俯视图和左视图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC=4,BC=6点D在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E处,联结BE,那么BE的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ADC=900,∠BAD=600,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE,EF,DF,则DF的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、
(1)求二次函数的解析式;
(2)写出使一次函数值大于二次函数值的的取值范围;
(3)若直线与轴的交点为点,连结、,求的面积;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com