相关习题
 0  365465  365473  365479  365483  365489  365491  365495  365501  365503  365509  365515  365519  365521  365525  365531  365533  365539  365543  365545  365549  365551  365555  365557  365559  365560  365561  365563  365564  365565  365567  365569  365573  365575  365579  365581  365585  365591  365593  365599  365603  365605  365609  365615  365621  365623  365629  365633  365635  365641  365645  365651  365659  366461 

科目: 来源: 题型:

【题目】如图,某小区规划在一个长50米,宽30米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪面积都为178平方米,设道路宽度为x米,则(  )

A.502x)(30x)=178×6

B.30×502×30x50x178×6

C.302x)(50x)=178

D.502x)(30x)=178

查看答案和解析>>

科目: 来源: 题型:

【题目】今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.

1)求B点到直线CA的距离;

2)执法船从AD航行了多少海里?(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,

(1)求证:四边形AEBD是菱形;

(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】怡然美食店的AB两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.

1)该店每天卖出这两种菜品共多少份?

2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.

(1)求抛物线的解析式;

(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;

(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在函数的图象上, 都是等腰直角三角形.斜边都在轴上(是大于或等于2的正整数),的坐标是______

查看答案和解析>>

科目: 来源: 题型:

【题目】在下列函数图象上任取不同两点,一定能使成立的是( )

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义:形如y|G|G为用自变量表示的代数式)的函数叫做绝对值函数.

例如,函数y|x1|yy|x2+2x+3|都是绝对值函数.

绝对值函数本质是分段函数,例如,可以将y|x|写成分段函数的形式:

探索并解决下列问题:

1)将函数y|x1|写成分段函数的形式;

2)如图1,函数y|x1|的图象与x轴交于点A10),与函数y的图象交于BC两点,过点Bx轴的平行线分别交函数yy|x1|的图象于DE两点.求证ABE∽△CDE

3)已知函数y|x2+2x+3|的图象与y轴交于F点,与x轴交于MN两点(点M在点N的左边),点P在函数y|x2+2x+3|的图象上(点P与点F不重合),PHx轴,垂足为H.若PMHMOF相似,请直接写出所有符合条件的点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,△ABC,∠ACB=90°,AC=4cm,BC=6cm,DBC的中点.EA出发acm/s(a>0)的速度沿AC匀速向点C运动;点F同时以1cm/s的速度从点C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点EAC的垂线AD于点G,连接EF,FG,设它们运动的时间为t(t≥t0).

(1)t=2,△CEF∽△ABC,求a的值;

(2)a=以点E、F、D、G为顶点点四边形时平行四边形,求t的值;

(3)a=2,是否存在实数t,使得点△DFG是直角三角形?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线段AE为边作正方形AEFG,连接EBGD

1)如图1,求证EBGD

2)如图2,若点E在线段DG上,AB5AG3,求BE的长.

查看答案和解析>>

同步练习册答案