相关习题
 0  365489  365497  365503  365507  365513  365515  365519  365525  365527  365533  365539  365543  365545  365549  365555  365557  365563  365567  365569  365573  365575  365579  365581  365583  365584  365585  365587  365588  365589  365591  365593  365597  365599  365603  365605  365609  365615  365617  365623  365627  365629  365633  365639  365645  365647  365653  365657  365659  365665  365669  365675  365683  366461 

科目: 来源: 题型:

【题目】一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为xh),两车到甲地的距离为ykm),两车行驶过程中yx之间的函数图象如图.

1)求轿车从乙地返回甲地时的速度和t的值;

2)求轿车从乙地返回甲地时yx之间的函数关系式,并写出自变量x的取值范围;

3)直接写出轿车从乙地返回甲地时与货车相遇的时间.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.

1)求a的值;

2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;

3)该市共有初中学生15000名,请估计其中坐校车上学的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85cos58°=0.53tan58°=1.60

]

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角标系中,抛物线Cyx轴交于AB两点(点A在点B的左侧),与y轴交于点C,点Dy轴正半轴上一点.且满足ODOC,连接BD

1)如图1,点P为抛物线上位于x轴下方一点,连接PBPD,当SPBD最大时,连接AP,以PB为边向上作正BPQ,连接AQ,点M与点N为直线AQ上的两点,MN2且点N位于M点下方,连接DN,求DN+MN+AM的最小值

2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将BOE绕着点A逆时针旋转60°得到B′O′E′,将抛物线y沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′x轴的右交点记为点F,连接E′FB′FR为线段E’F上的一点,连接B′R,将B′E′R沿着B′R翻折后与B′E′F重合部分记为B′RT,在平面内找一个点S,使得以B′RTS为顶点的四边形为矩形,求点S的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,ABAC10厘米,BC12厘米,DBC的中点,点PB出发,以a厘米/秒(a0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设它们的运动时间为t.

1)若a2,那么t为何值时△BPQ与△BDA相似?

2)已知MAC上一点,若当t时,四边形PQCM是平行四边形,求这时点P的运动速度.

3)在PQ两点运动过程中,要使线段PQ在某一时刻平分△ABD的面积,点P的运动速度应限制在什么范围内?(提示:对于一元二次方程,有如下的结论:若x1x2是方程ax2+bx+c0a≠0)的两个根,则x1+x2=﹣x1x2

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两车分别从AB两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.

1)求甲、乙两车行驶的速度VV.

2)求m的值.

3)若甲车没有故障停车,求可以提前多长时间两车相遇.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.

(1)求证:CE⊥AB;

(2)求证:PC是⊙O的切线;

(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.

一、学生睡眠情况分组表(单位:小时)

组别

睡眠时间

二、学生睡眠情况统计图

根据图表提供的信息,回答下列问题:

1)试求八年级学生睡眠情况统计图中的a的值及a对应的扇形的圆心角度数;

2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?

3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),BCD三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的结论有________(填序号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:

①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD= AM2

其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案