科目: 来源: 题型:
【题目】如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点在格点上.
(1)画出△ABC关于直线l对称的△A1B1C1;
(2)在直线l上找一点P,使PA+PB的长最短;(不写作法,保留作图痕迹)
(3)△ABC 直角三角形(填“是”或“不是”),并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,沿C→A→B→C的路径运动一周,且速度为每秒2cm,设运动时间为t秒,当t=_____时,点P与△ABC的某两个顶点构成等腰三角形.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的距离为整数的点有( )个.
![]()
A.5B.6C.7D.8
查看答案和解析>>
科目: 来源: 题型:
【题目】满足下列条件的△ABC不是直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.∠A﹣∠B=∠CD.BC=3,AC=4,AB=5
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系
中,一抛物线的顶点坐标是
,且过点
,平行四边形
的顶点在
此抛物线上,
与
轴相交于点
.己知点
的坐标是
,点
是抛物线上任意一点.
![]()
(1)求此抛物线的解析式及点
的坐标;
(2)在抛物线上是否存在点
,使得
的面积是
的面积的2倍?若存在,求此时点
的坐标.
(3)在
轴上有一动点
,若
,试建立
关于
的函数解析式,并求出
的运动范围;
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,抛物线
与
轴交于
两点(点
在点
的左侧),与
轴交于点
.
(1)求点
的坐标.
(2)当
时,经过点
的直线
与抛物线的另一个交点为
.该抛物线在直线
上方的部分与线段
组成一个新函数的图象.请结合图象回答:若新函数的最小值大于
,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线
(
为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设
是(1)所确定的抛物线上位于
轴下方、且在对称轴左侧的一个动点,过
作
轴的平行线,交抛物线于另一点
,再作
轴于
,
轴于
.
①当
时,求矩形
的周长;
②试问矩形
的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时
点的坐标.如果不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在直角坐标系中,矩形
的边
在
轴上,点
在原点,
.若矩形以每秒2个单位长度沿
轴正方向作匀速运动.同时点
从点
出发以每秒1个单位长度沿
的路线作匀速运动,当
点运动到
点时停止运动,矩形
也随之停止运动.设
点运动时间为
(秒).
![]()
(1)当
时,求出点
的坐标;
(2)若
的面积为
,试求出
与
之间的函数关系式(并写出相应的自变量
的取值范围).
(3)画出题(2)所列的函数的大致图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com