相关习题
 0  365818  365826  365832  365836  365842  365844  365848  365854  365856  365862  365868  365872  365874  365878  365884  365886  365892  365896  365898  365902  365904  365908  365910  365912  365913  365914  365916  365917  365918  365920  365922  365926  365928  365932  365934  365938  365944  365946  365952  365956  365958  365962  365968  365974  365976  365982  365986  365988  365994  365998  366004  366012  366461 

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线的顶点坐标是(14),且过点(25)

1)求抛物线的函数表达式;

2)求将抛物线向左平移几个单位,可以使平移后的抛物线经过原点?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+ca≠0)的图象与x轴交于点A10),与y轴的交点B在(02)和(01)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc0 4a+2b+c0 4acb28a abc.其中含所有正确结论的选项是(  )

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,抛物线y=ax2+c过点(-22)和点(45),点F02)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线ly=kx+b经过点BF且交x轴于点A

1)求抛物线的解析式;

2)①如图1,过点BBCx轴于点C,连接FC,求证:FC平分∠BFO

②当k= 时,点F是线段AB的中点;

3)如图2 M36)是抛物线内部一点,在抛物线上是否存在点B,使MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(阅读)如图1,在等腰ABC中,AB=ACAC边上的高为hM是底边BC上的任意一点,点M到腰ABAC的距离分别为h1h2.连接AM

      

(思考)在上述问题中,h1h2h的数量关系为:

(探究)如图2,当点MBC延长线上时,h1h2h之间有怎样的数量关系式?并说明理由.

(应用)如图3,在平面直角坐标系中有两条直线l1l2y=3x+3,若l2上的一点Ml1的距离是1,请运用上述结论求出点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.

(1)求一次至少购买多少只计算器,才能以最低价购买?

(2)求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;

(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,D是⊙O上一点,点EAC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.

(1)求证:AB=BC;

(2)如果AB=5,tanFAC=,求FC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】第二十四届冬季奥林匹克运动会将与2022220日在北京举行,北京将成为历史上第一座举办过夏奥会又举办过冬奥会的城市,东宝区举办了一次冬奥会知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.

(收集数据)

从甲、乙两校各随机抽取20名学生,在这次竞赛中它们的成绩如下:

30

60

60

70

60

80

30

90

100

60

60

100

80

60

70

60

60

90

60

60

80

90

40

60

80

80

90

40

80

50

80

70

70

70

70

60

80

50

80

80

(整理、描述数据)按如下分数段整理、描述这两组样本数据:

(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)

学校

平均分

中位数

众数

67

60

60

70

75

a

30≤x≤50

50<x≤80

80<x≤100

2

14

4

4

14

2

(分析数据)两组样本数据的平均分、中位数、众数如右表所示:其中a=  

(得出结论)

(1)小伟同学说:这次竞赛我得了70分,在我们学校排名属中游略偏上!由表中数据可知小明是  校的学生;(填”)

(2)老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为  

(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,关于x的方程x2+2x-k=0有两个不相等的实数根.

1)求k的取值范围;

2)若x1x2是这个方程的两个实数根,求的值;

3)根据(2)的结果你能得出什么结论?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点ABCD在同一条直线上,点EF分别在直线AD的两侧,且AE=DF∠A=∠DAB=DC

1)求证:四边形BFCE是平行四边形;

2)若AD=10DC=3∠EBD=60°,则BE= 时,四边形BFCE是菱形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PEBC于点EPFDC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EFAH于点G,当点PBD上运动时(不包括BD两点),以下结论:①MF=MC;②AHEF;③AP2=PMPH EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)

查看答案和解析>>

同步练习册答案