科目: 来源: 题型:
【题目】某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有_______名;
(2)把条形图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供15名成年人用一餐.据此估算,该校1800名学生一餐浪费的食物可供多少成年人食用一餐?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.
(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为 .
(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;
(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数(其中)的图象与x轴分别交于点A、B(点A位于B的左侧),与y轴交于点C,过点C作x轴的平行线CD交二次函数图像于点D.
(1)当m2时,求A、B两点的坐标;
(2)过点A作射线AE交二次函数的图像于点E,使得BAEDAB.求点E的坐标(用含m的式子表示);
(3)在第(2)问的条件下,二次函数的顶点为F,过点C、F作直线与x轴于点G,试求出GF、AD、AE的长度为三边长的三角形的面积(用含m的式子表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.
(1)证明:MD//OP;
(2)求证:PD是⊙O的切线;
(3)若AD24,AMMC,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.
(1)求甲、乙两工程队每天能完成塑胶改造的面积;
(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;
(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.
查看答案和解析>>
科目: 来源: 题型:
【题目】(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点的坐标为,点,分别在轴,轴的正半轴上运动,且,下列结论:
①
②当时四边形是正方形
③四边形的面积和周长都是定值
④连接,,则,其中正确的有( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y ax2 2ax 3a2 3(其中x是自变量),当x 2时,y随x的增大而增大,且3 x 0时,y的最大值为9,则a的值为( ).
A.1或B.或C.D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线 (为常数)与轴交于点和与轴交于点,点为抛物线顶点.
(Ⅰ)当时,求点,点的坐标;
(Ⅱ)①若顶点在直线上时,用含有的代数式表示;
②在①的前提下,当点的位置最高时,求抛物线的解析式;
(Ⅲ)若,当满足值最小时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com