相关习题
 0  366248  366256  366262  366266  366272  366274  366278  366284  366286  366292  366298  366302  366304  366308  366314  366316  366322  366326  366328  366332  366334  366338  366340  366342  366343  366344  366346  366347  366348  366350  366352  366356  366358  366362  366364  366368  366374  366376  366382  366386  366388  366392  366398  366404  366406  366412  366416  366418  366424  366428  366434  366442  366461 

科目: 来源: 题型:

【题目】小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:

1)他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,边上的中线,若,求证:.

2)如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)

3)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边的数量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线yx2+bx+c经过点ABC,已知A(﹣10),C0,﹣3).

1)求抛物线的解析式;

2)如图1,抛物线顶点为EEFx轴于F点,Mm0)是x轴上一动点,N是线段EF上一点,若∠MNC90°,请指出实数m的变化范围,并说明理由.

3)如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2k0)与抛物线相交于点PQ(点P在左边),过点Px轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形ABCD中,∠BAD60°,点E在边AD上,连接BE,在BE上取点F,连接AF并延长交BDH,且∠AFE60°,过CCGBD,直线CGAF交于G

(1)求证:∠FAE=∠EBA

(2)求证:AHBE

(3)AE3BH5,求线段FG的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点CD为监测点,已知点CDB在同一直线上,且ACBCCD400米,tanADC2,∠ABC35°

1)求道路AB段的长(结果精确到1米)

2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736cos35°≈0.8192tan35°≈0.7002

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,点ECD的中点,将BCE沿BE折叠后得到BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若,则=__

查看答案和解析>>

科目: 来源: 题型:

【题目】(Ⅰ)如图1,在菱形中,已知,抛物线)经过三点.

1)点的坐标为__________,点的坐标为__________

2)求抛物线的解析式.

(Ⅱ)如图2,点的中点,点的中点,直线垂直于点,点在直线上.

3)当的值最小时,则点的坐标为____________

4)在(3)的条件下,连接,问在抛物线上是否存在点,使得以为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点是线段上一点,,以点为圆心,的长为半径作⊙,过点的垂线交⊙两点,点在线段的延长线上,连接交⊙于点,以为边作

1)求证:是⊙的切线;

2)若,求四边形与⊙重叠部分的面积;

3)若,连接,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD交于点O,分别过点B、CBEAC,CEBD,BECE交于点E.

(1)求证:四边形OBEC是矩形;

(2)当∠ABD=60°,AD=2时,求∠EDB的正切值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了节能减排,我市某校准备购买某种品牌的节能灯,已知3A型节能灯和5B型节能灯共需50元,2A型节能灯和3B型节能灯共需31元.

1)求1A型节能灯和1B型节能灯的售价各是多少元?

2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

同步练习册答案