科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).
(1)如图1,如果⊙O的半径为,
①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与⊙O的位置关系;
②若点P在直线y=x+2上,点P的变换点P′在⊙O的内,求点P横坐标的取值范围.
(2)如图2,如果⊙O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与⊙O上任意一点距离的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在正方形中,是对角线上的一点,点在的延长线上,交于,.
(1)求证:;
(2)连接,若,求;
(3)如图2,若把正方形改为菱形,其他条件不变,当时,猜想与的数量关系,并证明你的猜想.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).
(1)求抛物线的顶点坐标;
(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.
(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD和线段EF都没有公共点,请直接写出m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整
(1)该函数的自变量x的取值范围是 .
(2)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | … |
| m | ﹣1 |
| ﹣5 | n | ﹣1 | … |
表中m= ,n= .
(3)描点、连线
在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该数的图象:
(4)观察所画出的函数图象,写出该函数的两条性质:
① ;
② .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).
(1)求k、m的值;
(2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.
①当n=3时,求线段AB上的整点个数;
②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求证:四边形ABCD是菱形;
(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】事件发生的可能性有大有小,请你把下列事件发生可能性的大小按由小到大的顺序排列起来__________.(只排序号)
①书包里有12本不同科目的教科书,随手摸出一本,恰好是数学书;
②花2元买了一张彩票,就中了500万大奖;
③我抛了两次硬币,都正面向上;
④若,则和互为相反数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
科目: 来源: 题型:
【题目】小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:(1)如图1,四边形中,,点为边的中点,连接并延长交的延长线于点,求证:;(表示面积)
问题迁移:(2)如图2:在已知锐角内有一个定点.过点任意作一条直线分别交射线于点.小明将直线绕着点旋转的过程中发现,的面积存在最小值,请问当直线在什么位置时,的面积最小,并说明理由.
实际应用:(3)如图3,若在道路之间有一村庄发生疫情,防疫部门计划以公路和经过防疫站的一条直线为隔离线,建立个面积最小的三角形隔离区,若测得试求的面积.(结果保留根号)(参考数据:)
拓展延伸:(4)如图4,在平面直角坐标系中,为坐标原点,点的坐标分别为,过点的直线与四边形一组对边相交,将四边形分成两个四边形,求其中以点为顶点的四边形面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com