精英家教网 > 高中数学 > 题目详情
7.三角形的面积$s=\frac{1}{2}(a+b+c)r$,a﹑b﹑c 为三边的边长,r为三角形内切圆半径,利用类比推理可以得到四面体的体积为(  )
A.V=$\frac{1}{3}$abc
B.$V=\frac{1}{3}sh$
C.$V=\frac{1}{3}(ab+bc+ca)h$
D.$V=\frac{1}{3}({s_1}+{s_2}+{s_3}+{s_4})r$(s1,s2,s3,s4分别为四个面的面积,r为四面体内切球半径)

分析 根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.

解答 解:设四面体的内切球的球心为O,则球心O到四个面的距离都是r,
根据三角形的面积的求解方法:分割法,将O与四顶点连起来,可得四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和,
∴V=$\frac{1}{3}$(S1+S2+S3+S4)r,
故选:D.

点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.甲、乙、丙、丁四人分别去买体育彩票各一张,恰有一人中奖,他们的对话如下,甲说:“我没中奖”;乙说:“我也没中奖,丙中奖了”;丙说:“我和丁都没中奖”;丁说:“乙说的是事实”.已知四人中有两人说的是真话,另外两人说的是假话,由此可判断中奖的是乙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点(a,b)是平面区域$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥0}\\{y≥-1}\end{array}\right.$内的任意一点,则3a-b的最小值为(  )
A.-3B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x<1},B={x|log3x<1},则(  )
A.A∩B={x|x<1}B.A∪B={x|x<1}C.A∪B=RD.A∩B={x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在正方体ABCD-A1B1C1D1中,E、F,H,O,O′分别为BC,CC1,A1A,BD,B1D1的中点.求证:
(1)EF∥AD1
(2)BF∥HD1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设矩阵A=$[\begin{array}{l}{m}&{0}\\{0}&{n}\end{array}]$,若矩阵A的属于特征值1的一个特征向量为$[\begin{array}{l}{1}\\{0}\end{array}]$,属于特征值2的一个特征向量为$[\begin{array}{l}{0}\\{1}\end{array}]$,求矩阵A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下推理是类比推理的个数是(  )
①由等比数列的性质推出等差数列的性质;
②由等式的性质推出不等式性质;
③由n=1,2,3时2n与2n+1的大小推出2n>2n+1(n>3,n∈N+);
④由实数的运算律推出虚数的运算律.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某随机变量ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为(  )
A.0.2B.0.4C.0.6D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知图1是一个边长为1的正三角形,三边中点的连线将它分成四个小三角形,去掉中间的一个小三角形,得到图2,再对图2中剩下的三个小三角形重复前述操作,得到图3,重复这种操作可以得到一系列图形.记第n个图形中所有剩下的小三角形的面积之和为an,所以去掉的三角形的周长之和为bn
( I) 试求a4,b4
( II) 试求an,bn

查看答案和解析>>

同步练习册答案