精英家教网 > 高中数学 > 题目详情
2.已知平面向量$\overrightarrow{a}$=(m,m-1),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m=$\frac{2}{3}$.

分析 利用向量的垂直的充要条件列出方程求解即可.

解答 解:平面向量$\overrightarrow{a}$=(m,m-1),$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
可得m+2m-2=0,解得m=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查向量的垂直条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(文)试卷(解析版) 题型:填空题

棱长为2的正方体外接球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌满一些水(未满),现将容器底面一边BC固定在地面上,再将容器倾斜,随着倾斜度的不同,有下列四种说法:
①水的部分始终呈棱柱状
②水面四边形EFGH的面积为定值
③棱A1D1始终与水面EFGH平行
④若E∈AA1,F∈BB1,则AE+BF是定值
其中正确命题的个数是(  )
A.1个B.2个C.3 个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m⊥n,m⊥α,则n∥α;
③若m?α,n?β,α∥β,则m∥n;
④若m∥α,α⊥β,则m⊥β.
其中,正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sin(π+α)-3cos(2π-α)=0,则cos2α的值为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=tan(2x+$\frac{π}{3}$),则下列说法正确的是(  )
A.f(x)在定义域是增函数B.f(x)的对称中心是($\frac{kπ}{4}$-$\frac{π}{6}$,0)(k∈Z)
C.f(x)是奇函数D.f(x)的对称轴是x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l:x-y+a=0,点A(-2,0),B(2,0).若直线l上存在点P满足AP⊥BP,则实数a的取值范围为[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{xsinθ}$+lnx在[1,+∞)上为增函数,且θ∈(0,π).
(Ⅰ)求函数f(x)在其定义域内的极值;
(Ⅱ)若在[1,e]上至少存在一个x0,使得kx0-f(x0)>$\frac{2e}{{x}_{0}}$成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若方程ln(k-ex)+x-1=0有解,求k的最小值2$\sqrt{e}$.

查看答案和解析>>

同步练习册答案