精英家教网 > 高中数学 > 题目详情
18.在△ABC中,若${a^2}-{b^2}=\sqrt{3}bc$且$\frac{c}{b}=2\sqrt{3}$,则角A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由题意可得c=2$\sqrt{3}$b,a2=7b2,由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,计算即可得到角A.

解答 解:在△ABC中,由${a^2}-{b^2}=\sqrt{3}bc$且$\frac{c}{b}=2\sqrt{3}$,
可得c=2$\sqrt{3}$b,a2=7b2
由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$
=$\frac{{b}^{2}+12{b}^{2}-7{b}^{2}}{2b•2\sqrt{3}b}$=$\frac{\sqrt{3}}{2}$,
可得A=$\frac{π}{6}$.
故选:A.

点评 本题考查余弦定理的运用,注意转化思想的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知AB为圆O:(x-1)2+y2=1的直径,点P为直线x-y+1=0上任意一点,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(θ)=$\frac{sin(θ-5π)cos(-\frac{π}{2}-θ)cos(8π-θ)}{sin(θ-\frac{3π}{2})sin(-θ-4π)}$
求(1)f(θ);
(2)f($\frac{4}{3}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P(非左、右顶点)使$\frac{a}{|P{F}_{2}|}$=$\frac{c}{|P{F}_{1}|}$,该椭圆的离心率取值范围为(  )
A.($\sqrt{2}-1$,1)B.[$\sqrt{2}$-1,1)C.(2-$\sqrt{2}$,1)D.[2-$\sqrt{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在△ABC中,AB=12.AC=3$\sqrt{6}$,BC=5$\sqrt{6}$.点D在边BC上.且∠ADB=120°.
(I)求cos∠CAD;
(Ⅱ)求线段AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若P(x,y)在不等式组$\left\{\begin{array}{l}{3x+y-8≤0}\\{x+2y-1≥0}\\{2x-y-2≥0}\end{array}\right.$所表示的平面区域内,则$\frac{1}{2}$x2+$\frac{1}{2}$y2的最大值为(  )
A.4B.5C.$\sqrt{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知方程(x2-mx+4)(x2-nx+4)=0的四个根组成一个首项$\frac{1}{4}$的等比数列,则|m-n|的值为(  )
A.0B.$11\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{19}$,$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角θ的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正方体ABCD-A′B′C′D′的边长为a.
(1)求$\overrightarrow{AC}$$•\overrightarrow{AA′}$;
(2)求$\overrightarrow{AC}$$•\overrightarrow{A′C′}$;
(3)求$\overrightarrow{AC}$•$\overrightarrow{AC′}$.

查看答案和解析>>

同步练习册答案