精英家教网 > 高中数学 > 题目详情
7.已知$\overrightarrow{m}$,$\overrightarrow{n}$是两个非零向量,且|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,则|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|的最大值为(  )
A.$\frac{8\sqrt{3}}{3}$B.3$\sqrt{3}$C.$\frac{7\sqrt{3}}{2}$D.4$\sqrt{2}$

分析 由|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,得${\overrightarrow{n}}^{2}$+$\overrightarrow{m}•\overrightarrow{n}$=0,得出|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|关于|$\overrightarrow{n}$|的函数,求出此函数的最值即可.

解答 解:∵|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,
∴($\overrightarrow{m}+2\overrightarrow{n}$)2=4${\overrightarrow{n}}^{2}$+4$\overrightarrow{m}•\overrightarrow{n}$+4=4,
∴${\overrightarrow{n}}^{2}$+$\overrightarrow{m}•\overrightarrow{n}$=0,
∴(2$\overrightarrow{m}$+$\overrightarrow{n}$)2=4${\overrightarrow{m}}^{2}$+4$\overrightarrow{m}•\overrightarrow{n}$+${\overrightarrow{n}}^{2}$=16+3$\overrightarrow{m}•\overrightarrow{n}$=16-3${\overrightarrow{n}}^{2}$,
∴|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|=$\sqrt{16-3|\overrightarrow{n}{|}^{2}}$+|$\overrightarrow{n}$|,
令|$\overrightarrow{n}$|=x(0<x≤$\frac{4}{\sqrt{3}}$),f(x)=$\sqrt{16-3{x}^{2}}$+x,
则f′(x)=$\frac{-6x}{2\sqrt{16-3{x}^{2}}}$+1,令f′(x)=0得x=$\frac{2}{\sqrt{3}}$,
∴当0$<x<\frac{2}{\sqrt{3}}$时,f′(x)>0,当$\frac{2}{\sqrt{3}}<x<\frac{4}{\sqrt{3}}$时,f′(x)<0,
∴当x=$\frac{2}{\sqrt{3}}$时,f(x)取得最大值f($\frac{2}{\sqrt{3}}$)=$\frac{8\sqrt{3}}{3}$.
故选A.

点评 本题考查了向量的模的求法,考查了数学转化思想方法,训练了利用导数研究函数的极值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.给出下面的语句:最后输出的结果是(  )
A.1+2+3+…+100B.12+22+32+…+1002C.1+3+5+…+99D.12+32+52+…+992

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某种彩票的投注号码由7位数字组成,每位数字均为0~9这10个数码中的任意1个.由摇号得出1个7位数(首位可为0)为中奖号,若某张彩票的7位数与中奖号相同即得一等奖,若有6位相连数字与中奖号的相应数位上的数字相同即得二等奖,若有5位相连数字与中奖号的相应数位上的数字相同即得三等奖,各奖不可兼得.某人买了1张彩票且假设这期彩票中奖号码为1234567.
(1)求其获得二等奖的概率;
(2)求其获得三等奖及以上奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线过点P(2,1).
(1)若直线与3x-2y+4=0平行,求直线的方程.
(2)若直线与3x-2y+4=0垂直,求直线的方程.
(3)若直线在两坐标轴上的截距相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:?x∈R,kx2+1≤0,命题q:?x∈R,x2+2kx+1>0.
(1)当k=3时,写出命题p的否定,并判断真假;
(2)当p∨q为假命题时,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知tanα=3,则2sin2α-sinαcosα+cos2α的值等于(  )
A.$\frac{8}{9}$B.$\frac{7}{5}$C.$\frac{2}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设样本数据x1,x2,…,x2017标准差为4,若yi=2xi-1(i=1,2,3,…,2017),则数据y1,y2,…,y2017的标准差为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{-{x}^{2}+2x,x≥0}\end{array}\right.$,则f(2)=0.若f(f(x))≥9,则实数x的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.点P是曲线C1:(x-2)2+y2=4上的动点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,以极点O为中心,将点P逆时针旋转90°得到点Q,设点Q的轨迹方程为曲线C2
(1)求曲线C1,C2的极坐标方程;
(2)射线θ=$\frac{π}{3}({ρ>0})$与曲线C1,C2分别交于A,B两点,定点M(2,0),求△MAB的面积.

查看答案和解析>>

同步练习册答案