| A. | $\frac{8\sqrt{3}}{3}$ | B. | 3$\sqrt{3}$ | C. | $\frac{7\sqrt{3}}{2}$ | D. | 4$\sqrt{2}$ |
分析 由|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,得${\overrightarrow{n}}^{2}$+$\overrightarrow{m}•\overrightarrow{n}$=0,得出|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|关于|$\overrightarrow{n}$|的函数,求出此函数的最值即可.
解答 解:∵|$\overrightarrow{m}$|=2,|$\overrightarrow{m}$+2$\overrightarrow{n}$|=2,
∴($\overrightarrow{m}+2\overrightarrow{n}$)2=4${\overrightarrow{n}}^{2}$+4$\overrightarrow{m}•\overrightarrow{n}$+4=4,
∴${\overrightarrow{n}}^{2}$+$\overrightarrow{m}•\overrightarrow{n}$=0,
∴(2$\overrightarrow{m}$+$\overrightarrow{n}$)2=4${\overrightarrow{m}}^{2}$+4$\overrightarrow{m}•\overrightarrow{n}$+${\overrightarrow{n}}^{2}$=16+3$\overrightarrow{m}•\overrightarrow{n}$=16-3${\overrightarrow{n}}^{2}$,
∴|2$\overrightarrow{m}$+$\overrightarrow{n}$|+|$\overrightarrow{n}$|=$\sqrt{16-3|\overrightarrow{n}{|}^{2}}$+|$\overrightarrow{n}$|,
令|$\overrightarrow{n}$|=x(0<x≤$\frac{4}{\sqrt{3}}$),f(x)=$\sqrt{16-3{x}^{2}}$+x,
则f′(x)=$\frac{-6x}{2\sqrt{16-3{x}^{2}}}$+1,令f′(x)=0得x=$\frac{2}{\sqrt{3}}$,
∴当0$<x<\frac{2}{\sqrt{3}}$时,f′(x)>0,当$\frac{2}{\sqrt{3}}<x<\frac{4}{\sqrt{3}}$时,f′(x)<0,
∴当x=$\frac{2}{\sqrt{3}}$时,f(x)取得最大值f($\frac{2}{\sqrt{3}}$)=$\frac{8\sqrt{3}}{3}$.
故选A.
点评 本题考查了向量的模的求法,考查了数学转化思想方法,训练了利用导数研究函数的极值,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1+2+3+…+100 | B. | 12+22+32+…+1002 | C. | 1+3+5+…+99 | D. | 12+32+52+…+992 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{9}$ | B. | $\frac{7}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com