精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|x+1|-|x-1|+a(a∈R).
(Ⅰ)若a=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实数根,求实数a的取值范围.

分析 (Ⅰ)根据绝对值的意义,求得不等式f(x)≤6的解集.
(Ⅱ)函数f(x)的图象与直线y=x有3个不同的交点,数形结合可得a的范围.

解答 解:(Ⅰ)∵a=1时,f(x)=|x+1|-|x-1|+1,
∴当x≤-1时,f(x)=-1,不可能非负.
当-1<x<1时,f(x)=2x+1,由f(x)≥0可解得x≥$-\frac{1}{2}$,于是$-\frac{1}{2}$≤x<1.
当x≥1时,f(x)=3>0恒成立.
∴不等式f(x)≥0的解集$[-\frac{1}{2}\;,\;\;+∞)$.…(5分)
(Ⅱ)由方程f(x)=x可变形为a=x+|x-1|-|x+1|.
令$h(x)=x+|{x-1}|-|{x+1}|=\left\{\begin{array}{l}x+2,x<-1\\-x,\;\;\;-1≤x≤1\\ x-2,x>1\end{array}\right.$
作出图象如右. …(8分)
于是由题意可得-1<a<1.…(10分)

点评 本题主要绝对值的意义,方程根的存在性以及个数判断,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知A,B是球O的球面上的两点,∠AOB=$\frac{π}{2}$,C为该球球面上的动点,若三棱锥O-ABC体积的最大值为3,则球的体积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{2{x}^{2}-1}{{x}^{2}+2}$,则函数f(x)的值域是(  )
A.[-$\frac{1}{2}$,1]B.[-$\frac{1}{2}$,2]C.[-$\frac{1}{2}$,2)D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠BAD=60°,E是AD的中点,点Q在侧棱PC上.
(I)求证:AD⊥平面PBE;
(II)若Q是PC的中点,求证PA∥平面BDQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的图象(部分)如图.
(1)求f(x)解析式
(2)若$α∈({0,\frac{π}{3}}),且f({\frac{α}{π}})=\frac{4}{3}$,求cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{a}(x≥0)}\\{|x-2|(x<0)}\end{array}\right.$,且f(-2)=f(2),则f(4)=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆O半径为2,弦AB=2,点C为圆O上任意一点,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)计算化简求值:($\frac{8}{27}$)${\;}^{-\frac{1}{3}}$+log2(2-3×$\frac{1}{64}$)+($\sqrt{2}$-1)ln1+2lg$\sqrt{50}$-lg5+2${\;}^{lo{g}_{2}5}$.
(2)已知10a=2,b=lg3,试用a,b表示log630.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集U=R,集合A={x|1≤x<4},B={x|3x-1<x+5},求:
(1)A∩B;      
(2)∁UA∪B.

查看答案和解析>>

同步练习册答案