精英家教网 > 高中数学 > 题目详情
11.已知A,B是球O的球面上的两点,∠AOB=$\frac{π}{2}$,C为该球球面上的动点,若三棱锥O-ABC体积的最大值为3,则球的体积为24π.

分析 当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为3,求出半径,即可求出球O的表面积.

解答 解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,设球O的半径为R,此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}×{R}^{2}×R$=$\frac{1}{6}{R}^{3}$=3
∴R3=18,
则球O的体积为$\frac{4}{3}$πR3=24π.
故答案为:24π.

点评 本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知点A(-1,0),B(1,0),直线AM与直线BM相交于点M,直线AM与直线BM的斜率分别记为kAM与kBM,且kAM•kBM=-2
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过定点F(0,1)作直线PQ与曲线C交于P,Q两点,△OPQ的面积是否存在最大值?若存在,求出△OPQ面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{x+a}{3x-2}$,x∈[1,4],且f(1)=2.
(1)求函数的解析式并证明函数的单调性;
(2)求函数y=f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{2x+3,x<0}\\{2{x}^{2}+1,x≥0}\end{array}\right.$,则f[f(-1)]的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A={x|-1<x<4},B={x|-5<x<$\frac{3}{2}$},C={x|1-2a<x<2a}.若C⊆(A∩B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知{an}的前n项和Sn=$\frac{{{n^2}+n}}{2}$+1,则数列{${\frac{1}{{{a_n}{a_{n+1}}}}$}的前99项和T99=$\frac{37}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.根据如图框图,当输入x为9时,输出的y=(  )
A.1B.2C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知tan(α+$\frac{π}{4}$)=$\frac{1}{2}$,且α∈(-$\frac{π}{2}$,0),则$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$=(  )
A.$-\frac{{3\sqrt{5}}}{10}$B.$-\frac{{2\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{3\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+1|-|x-1|+a(a∈R).
(Ⅰ)若a=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案