| A. | $-\frac{{3\sqrt{5}}}{10}$ | B. | $-\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{3\sqrt{10}}}{10}$ |
分析 由条件利用两角和的正切公式求得tanα的值,再利用同角三角函数的基本关系,求得$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$的值.
解答 解:∵tan(α+$\frac{π}{4}$)=$\frac{tanα+1}{1-tanα}$=$\frac{1}{2}$,则tanα=-$\frac{1}{3}$,
∵tanα=$\frac{sinα}{cosα}$,sin2α+cos2α=1,α∈(-$\frac{π}{2}$,0),
可得 sinα=-$\frac{\sqrt{10}}{10}$.
∴$\frac{{2{{sin}^2}α+sin2α}}{{cos(α-\frac{π}{4})}}$=$\frac{2sinα(sinα+cosα)}{cos(\frac{π}{4}-α)}$=$\frac{4sinα(sinα+cosα)}{\sqrt{2}(sinα+cosα)}$=2$\sqrt{2}$sinα=2$\sqrt{2}$×(-$\frac{\sqrt{10}}{10}$)=-$\frac{2\sqrt{5}}{5}$.
故选:B.
点评 本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{3}+8+2\sqrt{19}$ | B. | $4\sqrt{3}+8+4\sqrt{19}$ | C. | $8\sqrt{3}+8+4\sqrt{19}$ | D. | $8\sqrt{3}+8+2\sqrt{19}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-5≤x≤-3} | B. | {x|4<x<5,或x≤-3} | C. | {x|-5<x<-3} | D. | {x|-5<x<5} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,1] | B. | [-$\frac{1}{2}$,2] | C. | [-$\frac{1}{2}$,2) | D. | (-$\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com