分析 可取AB的中点D,并连接OD,OA,OC,则可根据条件求得$cos∠OAD=\frac{1}{2}$,而$\overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}$,代入$\overrightarrow{AB}•\overrightarrow{AC}$进行数量积的运算即可求得$\overrightarrow{AB}•\overrightarrow{AC}=4cos<\overrightarrow{AB},\overrightarrow{OC}>+2$,从而便可得出$\overrightarrow{AB}•\overrightarrow{AC}$的最大值.
解答
解:如图,取AB中点D,连接OD,OA,OC,则:
cos∠OAD=$\frac{1}{2}$;
∴$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{AB}•(\overrightarrow{OC}-\overrightarrow{OA})$
=$\overrightarrow{AB}•\overrightarrow{OC}-\overrightarrow{AB}•\overrightarrow{OA}$
=$|\overrightarrow{AB}||\overrightarrow{OC}|cos<\overrightarrow{AB},\overrightarrow{OC}>+|\overrightarrow{AB}||\overrightarrow{OA}|cos∠OAD$
=$4cos<\overrightarrow{AB},\overrightarrow{OC}>+2$
≤6;
当$cos<\overrightarrow{AB},\overrightarrow{OC}>=1$,即$\overrightarrow{AB},\overrightarrow{OC}$同向时取“=”;
∴$\overrightarrow{AB}•\overrightarrow{AC}$的最大值为6.
故答案为:6.
点评 考查圆心和弦中点的连线和弦垂直,三角函数的定义,向量减法的几何意义,以及向量数量积的运算及计算公式,余弦函数的最大值,向量夹角的概念.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若命题p为真命题,命题q为假命题,则命题“p∨(¬q)”为真命题 | |
| B. | 命题“若a+b≠7,则a≠2或b≠5”为真命题 | |
| C. | 命题“若x2-x=0,则x=0或x=1”的否命题为“若x2-x=0,则x≠0且x≠1” | |
| D. | 命题p:?x>0,sinx>2x-1,则¬p为?x>0,sinx≤2x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[-\frac{3π}{8},\frac{π}{8}]$ | B. | $[\frac{π}{8},\frac{5π}{8}]$ | C. | $[-\frac{5π}{8},-\frac{π}{8}]$ | D. | $[-\frac{π}{8},\frac{3π}{8}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com