精英家教网 > 高中数学 > 题目详情
8.下列命题中错误的是(  )
A.若命题p为真命题,命题q为假命题,则命题“p∨(¬q)”为真命题
B.命题“若a+b≠7,则a≠2或b≠5”为真命题
C.命题“若x2-x=0,则x=0或x=1”的否命题为“若x2-x=0,则x≠0且x≠1”
D.命题p:?x>0,sinx>2x-1,则¬p为?x>0,sinx≤2x-1

分析 逐项分析即可.A、根据复合命题的真值易得;B、转化为判断其逆否命题容易判断;C、否命题也要否定条件;D、由含有一个量词的命题的否定易得.

解答 解:A、若q为假,则¬q为真,故p∨(¬q)为真,故A正确;
B、命题的逆否命题为:若a=2且b=5,则a+b=7,显然正确,故原命题正确,故B正确;
C、命题“若x2-x=0,则x=0或x=1”的否命题应为“若x2-x≠0则x≠0且x≠1”,故C错误;
D、根据含有一个量词的命题的否定易得D正确.
综上可得:错误的为C.
故选:C.

点评 本题考查命题真假的判断.其中B项的判断是本题难点,转化为其逆否命题是关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD为矩形,EA⊥平面ABCD,EF∥AB,AB=2AE=2EF=4.
(1)设G为BC的中点,求证:FG∥平面BDE;
(2)求证:AF⊥平面FBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设{an}是等比数列,公比q=$\sqrt{2}$,Sn为{an}的前n项和.记Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,设Bn为数列{Tn}的最大项,则n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的图象(部分)如图.
(1)求f(x)解析式
(2)若$α∈({0,\frac{π}{3}}),且f({\frac{α}{π}})=\frac{4}{3}$,求cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足2z+$\overline z$=6-4i(i是虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆O半径为2,弦AB=2,点C为圆O上任意一点,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切.求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数y=f(x)满足:函数y=f(x-1)的图象关于直线x=1对称,且当x∈(-∞,0),f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=(sin$\frac{1}{2}$)f(sin$\frac{1}{2}$),b=(ln2)f(ln2),c=2f(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在矩形ABCD中,点E为CD的中点,$\overrightarrow{AB}$=a,$\overrightarrow{AD}$=$\overrightarrow b$,则$\overrightarrow{BE}$=(  )
A.$-\frac{1}{2}\overrightarrow a-\overrightarrow b$B.$\frac{1}{2}\overrightarrow a-\overrightarrow b$C.$-\frac{1}{2}\overrightarrow a+\overrightarrow b$D.$\frac{1}{2}\overrightarrow a+\overrightarrow b$

查看答案和解析>>

同步练习册答案