精英家教网 > 高中数学 > 题目详情
3.已知复数z满足2z+$\overline z$=6-4i(i是虚数单位),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 设出z,求得$\overline{z}$,由2z+$\overline z$=6-4i列式求得z的实部和虚部得答案.

解答 解:设z=a+bi(a,b∈R),
则$\overline{z}=a-bi$,
由2z+$\overline z$=6-4i,得2(a+bi)+a-bi=3a+bi=6-4i,
∴$\left\{\begin{array}{l}{3a=6}\\{b=-4}\end{array}\right.$,即$\left\{\begin{array}{l}{a=2}\\{b=-4}\end{array}\right.$.
∴复数z在复平面内对应的点的坐标为(2,-4),位于第四象限.
故选:D.

点评 本题考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.原点到直线y=-$\frac{1}{2}$x+$\frac{5}{2}$的距离为(  )
A.1B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ax2+(2a-1)x-3(a≠0)在区间[-$\frac{3}{2}$,2]上的最大值为1,则a=$\frac{3}{4}$或a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数Z=$\frac{-2i}{1+2i}$(i为虚数单位)所对应复平面内的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,角A,B,C的对边分别为a,b,c,已知c=12,b=4$\sqrt{6}$,O为△ABC的外接圆的圆心.
①若cosA=$\frac{4}{5}$,求△ABC的面积S;
②若D为BC边上任意一点,$\overrightarrow{DO}-\overrightarrow{DA}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中错误的是(  )
A.若命题p为真命题,命题q为假命题,则命题“p∨(¬q)”为真命题
B.命题“若a+b≠7,则a≠2或b≠5”为真命题
C.命题“若x2-x=0,则x=0或x=1”的否命题为“若x2-x=0,则x≠0且x≠1”
D.命题p:?x>0,sinx>2x-1,则¬p为?x>0,sinx≤2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.判断并证明函数f(x)=x+$\frac{1}{x}$在(-∞,-1]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设A={x|x-1>0},B={x|x<a},若A∩B≠∅,则实数a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>b,则下列正确的是(  )
1.a2>b2    2.ac>bc    3.ac2>bc2  4.a-c>b-c.
A.4B.2,3C.1,4D.1,2,3,4

查看答案和解析>>

同步练习册答案