精英家教网 > 高中数学 > 题目详情
设a=0.60.4,b=0.40.6,c=0.40.4,则a,b,c的大小关系是(  )
A、c>a>b
B、a>b>c
C、a>c>b
D、b>c>a
考点:指数函数的图像与性质
专题:函数的性质及应用
分析:根据指数函数幂函数的单调性和取值范围进行比较即可
解答: 解:∵指数函数y=0.4x,为减函数,
∴0.40.6<0.40.4
即b<c,
∵幂函数y=x0.4,为增函数,
∴0.60.4>0.40.4
即a>c,
∴a>c>b.
故选:C.
点评:本题主要考查指数幂的大小比较,利用指数函数和幂函数的单调性和指数函数的图象是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程log 
1
2
x=2x-2013的实数根的个数为(  )
A、0B、1C、2D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn},满足ak+1=ak+bk,k=1,2,3,….若存在正整数N,使得aN=a1成立,则称数列{an}为N阶“还原”数列.下列条件:
①|bk|=1;
②|bk|=k;
③|bk|=2k
可能使数列{an}为8阶“还原”数列的是(  )
A、①B、①②C、②D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;
②所以一个三角形中不能有两个直角;
③假设三角形的三个内角A、B、C中有两个直角,不妨设A=B=90°.
正确顺序的序号为(  )
A、①②③B、③①②
C、①③②D、②③①

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x2,x∈[-1,1]
2-x,x∈[1,2]
,则
2
-1
f(x)dx=(  )
A、
7
6
B、
5
6
C、
4
5
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(2x+φ),(|φ|<
π
2
,x∈R)的图象的一部分如图所示,为了得到函数f(x)的图象,只要将函数g(x)=2cos2x的图象上所有的点(  )
A、向左平移
π
6
个单位长度
B、向右平移
π
6
个单位长度
C、向左平移
π
3
个单位长度
D、向右平移
π
3
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

“关于x的不等式x+
1
x
>a在区间[
1
2
,2]内至少有一个解”是“a<2”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x,在[a,b]上满足f(a)•f(b)<0,则方程f(x)=0在(a,b)上(  )
A、有唯一解B、至少有一解
C、至多有一解D、无解

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率分别为e1、e2的椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)和双曲线C2
x2
a2
-
y2
b2
=1的两个公共顶点为A、B,若P、Q分别为双曲线C2和椭圆C1上不同于A、B的动点,且满足
AP
+
BP
=λ(
AQ
+
BQ
)(λ∈R,|λ|>1).如果直线AP、BP、AQ、BQ的斜率依次记为k1、k2、k3、k4
(1)求证:e12+e22=2;
(2)求证:k1+k2+k3+k4=0;
(3)设F1、F2分别为椭圆C1和双曲线C2的右焦点,若PF2∥QF1,求k12+k22+k32+k42的值.

查看答案和解析>>

同步练习册答案