ÒÑÖªÀëÐÄÂÊ·Ö±ðΪe1¡¢e2µÄÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©ºÍË«ÇúÏßC2£º
x2
a2
-
y2
b2
=1µÄÁ½¸ö¹«¹²¶¥µãΪA¡¢B£¬ÈôP¡¢Q·Ö±ðΪ˫ÇúÏßC2ºÍÍÖÔ²C1Éϲ»Í¬ÓÚA¡¢BµÄ¶¯µã£¬ÇÒÂú×ã
AP
+
BP
=¦Ë£¨
AQ
+
BQ
£©£¨¦Ë¡ÊR£¬|¦Ë|£¾1£©£®Èç¹ûÖ±ÏßAP¡¢BP¡¢AQ¡¢BQµÄбÂÊÒÀ´Î¼ÇΪk1¡¢k2¡¢k3¡¢k4£®
£¨1£©ÇóÖ¤£ºe12+e22=2£»
£¨2£©ÇóÖ¤£ºk1+k2+k3+k4=0£»
£¨3£©ÉèF1¡¢F2·Ö±ðΪÍÖÔ²C1ºÍË«ÇúÏßC2µÄÓÒ½¹µã£¬ÈôPF2¡ÎQF1£¬Çók12+k22+k32+k42µÄÖµ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÒÑÖªµÃe1=
c
a
=
a2-b2
a
£¬e2=
c¡ä
a
=
a2+b2
a
£¬ÓÉ´ËÄÜÖ¤Ã÷e12+e22=2£®
£¨2£©ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬x12-a2=
a2
b2
y12
£¬k1+k2=
y1
x1+a
+
y1
x1-a
=
2b2
a2
¡Á
x1
y1
£¬k3+k4=
y2
x2+a
+
y2
x2-a
=-
2b2
a2
¡Á
x2
y2
£¬ÓÉ´ËÄÜÖ¤Ã÷k1+k2+k3+k4=0£®
£¨3£©ÓÉ¢ÙµÃ(k1+k2)2=
4b4
a4
¡Á
a4
b4
=4£¬ÓÉ£¨2£©µÃk3+k4=-£¨k1+k2£©£¬(k3+k4)2=4£¬k1k2=
b2
a2
£¬k3k4=
y2
x2+a
¡Á
y2
x1-a
=-
b2
a2
£¬ÓÉ´ËÄÜÇó³ök12+k22+k32+k42µÄÖµ£®
½â´ð£º £¨1£©Ö¤Ã÷£º¡ßÀëÐÄÂÊ·Ö±ðΪe1¡¢e2µÄÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©ºÍË«ÇúÏßC2£º
x2
a2
-
y2
b2
=1£¬
¡àÓÉÒÑÖªµÃe1=
c
a
=
a2-b2
a
£¬e2=
c¡ä
a
=
a2+b2
a
£¬
¡àe12+e22=
a2-b2
a2
+
a2+b2
a2
=2£®
£¨2£©Ö¤Ã÷£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
¡ß
x12
a2
-
y12
b2
=1
£¬¡àx12-a2=
a2
b2
y12
£¬
k1+k2=
y1
x1+a
+
y1
x1-a
=
2x1y1
x12-a2
=
2b2
a2
¡Á
x1
y1
£¬¢Ù
¡ß
x22
a2
+
y22
b2
=1
£¬¡àx22-a2=-
a2
b2
y22
£¬
¡àk3+k4=
y2
x2+a
+
y2
x2-a
=
2x2y2
x22-a2
=-
2b2
a2
¡Á
x2
y2
£¬¢Ú
¡ß
OP
=¦Ë
OQ
£¬¡àO¡¢P¡¢QÈýµã¹²Ïߣ¬
¡à
x1
y1
=
x2
y2
£¬
¡àÓÉ¢Ù¢ÚµÃk1+k2+k3+k4=0£¬
£¨3£©½â£º
x12
a2
+
y12
b2
=¦Ë2
Óë
x12
a2
-
y12
b2
=1
ÁªÁ¢£¬
µÃx12=
¦Ë2+1
2
a2
£¬y12=
¦Ë2-1
2
b2
£¬
¡ßPF2¡ÎQF1£¬¦Ë£¾1£¬¡à|OF2|=¦Ë|OF1|£¬
¡à¦Ë2=
a2+b2
a2-b2
£¬¡à
x12
y12
=
(¦Ë2+1)a2
(¦Ë2-1)b2
=
a4
b4
£¬
ÓÉ¢ÙµÃ(k1+k2)2=
4b4
a4
¡Á
a4
b4
=4£¬
ÓÉ£¨2£©µÃk3+k4=-£¨k1+k2£©£¬¡à(k3+k4)2=4£¬
ÓÖ¡ßk1k2=
y1
x1+a
¡Á
y1
x1-a
=
y12
x12-a2
=
b2
a2
£¬
k3k4=
y2
x2+a
¡Á
y2
x1-a
=
y22
x22-a2
=-
b2
a2
£¬
¡àk12+k22+k32+k42
=£¨k1+k2£©2+(k3+k4)2-2(k1k2+k3k4)=4+4-0=8£®
µãÆÀ£º±¾Ì⿼²ée12+e22=2µÄÖ¤Ã÷£¬¿¼²ék1+k2+k3+k4=0µÄÖ¤Ã÷£¬¿¼²ék12+k22+k32+k42µÄÖµµÄÇ󷨣¬½âÌâʱҪעÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa=0.60.4£¬b=0.40.6£¬c=0.40.4£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A¡¢c£¾a£¾b
B¡¢a£¾b£¾c
C¡¢a£¾c£¾b
D¡¢b£¾c£¾a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=-4x+1£¬ÊÔÅжÏf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Ä³µØÓÐÁ½¶°Â¥AB¡¢CD£¬¼ä¸ô50Ã×£¬ÒÑÖªABÂ¥¸ß50Ã×£¬ACΪˮƽµØÃ棬PΪACÖе㣬ÏÖÔÚP´¦²âµÃÁ½Â¥¶¥ÕŽǡÏBPD=45¡ã£¬ÊÔÇóÂ¥CDµÄ¸ß¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx+
1
x
£®
£¨1£©ÇóÇúÏßy=f£¨x£©ÔÚ£¨2£¬f£¨2£©£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èôg£¨x£©=f£¨x£©-
1
x
+ax2-2xÓÐÁ½¸ö²»Í¬µÄ¼«Öµµã£®Æä¼«Ð¡ÖµÎªM£¬ÊԱȽÏ2MÓë-3µÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Éèq£¾p£¾2£¬ÇóÖ¤£ºµ±x¡Ê£¨p£¬q£©Ê±£¬
f(x)-f(p)
x-p
£¾
f(x)-f(p)
x-q
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=x2-x+alnx£¬ÆäÖÐa¡Ù0£®
£¨1£©a=-6£¬Çóº¯Êýf£¨x£©ÔÚ[1£¬4]ÉϵÄ×îÖµ£»
£¨2£©É躯Êýf£¨x£©¼ÈÓм«´óÖµ£¬ÓÖÓм«Ð¡Öµ£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©ÇóÖ¤£ºµ±n¡ÊN*ʱ£¬e n(n2-1)¡Ý£¨n!£©3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ex-ax£¬g£¨x£©=-ax£¨
1
2
x-1£©+1
£¨¢ñ£©ÒÑÖªÇø¼ä[-1£¬1]ÊDz»µÈʽf£¨x£©£¾0µÄ½â¼¯µÄ×Ó¼¯£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ò£©ÒÑÖªº¯Êý¦Õ£¨x£©=f£¨x£©+g£¨x£©£¬ÔÚº¯Êýy=¦Õ£¨x£©Í¼ÏóÉÏÈÎÈ¡Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Èô´æÔÚaʹµÃy1-y2¡Üm£¨x1-x2£©ºã³ÉÁ¢£¬ÇómµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
a
=£¨2cosx£¬1£©£¬
b
=£¨cosx£¬
3
sin2x£©£¬ÇÒf£¨x£©=
a
b
£¬
£¨1£©Çóf£¨x£©ÔÚx¡Ê[-
¦Ð
3
£¬
¦Ð
3
]µÄ×î´óÖµ£»
£¨2£©Èôf£¨x£©=1-
3
£¬x¡Ê[-
¦Ð
3
£¬
¦Ð
3
]£¬Çóx£»
£¨3£©º¯Êýf£¨x£©µÄͼÏó¿ÉÒÔÓɺ¯Êýy=2sin2xµÄͼÏó¾­¹ýÔõÑùµÄ±ä»»µÃ³ö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬µ±x£¾1ʱ£¬f£¨x£©£¾0£¬ÇÒf£¨
x
y
£©=f£¨x£©-f£¨y£©£¬Èôf£¨4£©=2£¬Çóf£¨x£©ÔÚ[1£¬16]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸