精英家教网 > 高中数学 > 题目详情
10.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出程序框图.

分析 由题意,从成绩中搜索出大于等于60的成绩,由此可得选择结构的判断框的条件,再依据搜索数据的个数确定循环的条件,得到算法,即可画出相应框图.

解答 解:程序框图如下:

程序如下:
i=1
WHILE i<=50
  INPUT x
   IF x>=60 THEN  PRINT x
   END IF
  i=i+1
WEND
END.

点评 本题主要考查了程序框图的画法,解题时要认真审题,注意算法的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.等比数列{an}中,a1>1,前n项和为Sn,若$\lim_{x→∞}{S_n}=\frac{1}{a_1}$,那么a1的取值范围是(  )
A.(1,+∞)B.(1,2)C.$(1\;,\;\;\sqrt{3})$D.$(1\;,\;\;\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)的导函数为f'(x),若对于定义域内任意x1,x2(x1≠x2),有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}=f'({\frac{{{x_1}+{x_2}}}{2}})$恒成立,则称f(x)为恒均变函数.给出下列函数:
①f(x)=2x+3;
②$f(x)=\frac{1}{x}$;
③f(x)=x2-2x+3;
④f(x)=ex
⑤f(x)=lnx.
其中为恒均变函数的序号是①③(写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.证明:(Ⅰ)$sinαcosβ=\frac{1}{2}[sin(α+β)+sin(α-β)]$
(Ⅱ)$sinα+sinβ=2sin\frac{α+β}{2}cos\frac{α-β}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.一个命题的逆命题为真,则它的逆否命题一定为真
B.“|a|>|b|”与“a2>b2”不等价.
C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”.
D.一个命题的否命题为真,则它的逆命题一定为真.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将一枚均匀硬币先后抛两次,恰好有一次出现正面的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2.将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD.
(1)若M是A1D的中点,求A1B与平面CME所成角的正弦值;
(2)线段A1B上是否存在点P,使平面PME与平面CME垂直,若存在,求$\frac{{{A_1}P}}{{{A_1}B}}$的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的空间几何体中,EC⊥平面ABCD,四边形ABCD是菱形,CE∥BF,且CE=2BF,G,H,P分别为AF,DE,AE的中点.求证:
(Ⅰ)GH∥平面BCEF;
(Ⅱ)FP⊥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线 y+3=0的倾斜角是(  )
A.B.45°C.90°D.不存在

查看答案和解析>>

同步练习册答案