精英家教网 > 高中数学 > 题目详情
18.证明:(Ⅰ)$sinαcosβ=\frac{1}{2}[sin(α+β)+sin(α-β)]$
(Ⅱ)$sinα+sinβ=2sin\frac{α+β}{2}cos\frac{α-β}{2}$.

分析 (Ⅰ)由条件利用两角和差的正弦函数公式化简等式的右边,从而证得等式成立.
(Ⅱ)由两角和与差的正弦函数,余弦函数公式,同角三角函数基本关系式化简等式右边,即可得证.

解答 (本题满分为8分)
证明:(Ⅰ)∵右边=$\frac{1}{2}$[sinαcosβ+cosαsinβ+(sinαcosβ-cosαsinβ)]=$\frac{1}{2}$×2sinαcosβ=sinαcosβ=左边,
∴$sinαcosβ=\frac{1}{2}[sin(α+β)+sin(α-β)]$成立.
(Ⅱ)右边=2(sin$\frac{α}{2}$cos$\frac{β}{2}$+cos$\frac{α}{2}$sin$\frac{β}{2}$)(cos$\frac{α}{2}$cos$\frac{β}{2}$+sin$\frac{α}{2}$sin$\frac{β}{2}$)=2sin$\frac{α}{2}$cos2$\frac{β}{2}$cos$\frac{α}{2}$+2sin2$\frac{α}{2}$sin$\frac{β}{2}$cos$\frac{β}{2}$+2cos2$\frac{α}{2}$sin$\frac{β}{2}$cos$\frac{β}{2}$+2cos$\frac{α}{2}$sin2$\frac{β}{2}$sin$\frac{α}{2}$
=sinαcos2$\frac{β}{2}$+sin2$\frac{α}{2}$sinβ+cos2$\frac{α}{2}$sinβ+sin2$\frac{β}{2}$sinα
=sinα(cos2$\frac{β}{2}$+sin2$\frac{β}{2}$)+(sin2$\frac{α}{2}$+cos2$\frac{α}{2}$)sinβ
=sinα+sinβ
得证.(每小题4分)

点评 本题主要考查两角和差的正弦函数,余弦公式的应用,考查了同角三角函数基本关系式的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[10,14],[15,19],[20,24],[25,29],[30,34]的爱看比例分别为10%,18%,20%,30%,t%.现用这5个年龄段的中间值x代表年龄段,如12代表[10,14],17代表[15,19],根据前四个数据求得x关于爱看比例y的线性回归方程为$\widehaty=(kx-4.68)%$,由此可推测t的值为(  )
A.33B.35C.37D.39

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.数列{an},{bn}为等差数列,前n项和分别为Sn,Tn,若$\frac{S_n}{T_n}=\frac{3n+2}{2n}$,则$\frac{a_7}{b_7}$=(  )
A.$\frac{41}{26}$B.$\frac{23}{14}$C.$\frac{11}{7}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列四个命题:
①命题“?x∈(0,2),2x>x2”的否定是“?x∈(0,2),2x≤x2”;
②若直线l上有无数个点不在平面α内,则l∥α;
③若随机变量ξ:N(1,σ2)且P(ξ<2)=0.7,则P(0<ξ<1)=0.3;
④等差数列{an}的前n项和为Sn,若a6=3,则S11=33.
其中真命题的序号是①④(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示的多面体ABCDE中,已知AB∥DE,AB⊥AD,AD=2$\sqrt{3}$,AC=CD=DE=2AB=2,BC=$\sqrt{5}$,F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过点(1,0)作倾斜角为$\frac{3π}{4}$的直线与y2=4x交于A、B,则AB的弦长为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某班共有学生50人,在一次数学测试中,要搜索出测试中及格(60分及以上)的成绩,试设计一个算法,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2sinx,则当x<0时,f(x)=(  )
A.-x2-2sinxB.-x2+2sinxC.x2+2sinxD.x2-2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{2x}{{x}^{2}-1}$
(1)用定义证明该函数在[1,+∞)上是减函数
(2)判断该函数的奇偶性.

查看答案和解析>>

同步练习册答案