精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{2x}{{x}^{2}-1}$
(1)用定义证明该函数在[1,+∞)上是减函数
(2)判断该函数的奇偶性.

分析 (1)根据函数单调性定义法证明步骤:取值、作差、变形、定号、下结论,进行证明即可;
(2)由解析式求出定义域,化简f(-x)后由函数奇偶性的定义判断即可.

解答 证明:(1)任取1≤x1<x2
则f(x2)-f(x1)=$\frac{2{x}_{2}}{{{x}_{2}}^{2}+1}$-$\frac{2{x}_{1}}{{{x}_{1}}^{2}+1}$
=$\frac{2{x}_{2}{{x}_{1}}^{2}+2{x}_{2}-2{x}_{1}{{x}_{2}}^{2}-2{x}_{1}}{{{({{x}_{1}}^{2}+1)(x}_{2}}^{2}+1)}$
=$\frac{2{x}_{1}{x}_{2}({x}_{1}-{x}_{2})+2({x}_{2}-{x}_{1})}{{({{x}_{1}}^{2}+1){(x}_{2}}^{2}+1)}$
=$\frac{2({x}_{2}-{x}_{1})(1-{x}_{1}{x}_{2})}{({{x}_{1}}^{2}+1){{(x}_{2}}^{2}+1)}$,
∵1≤x1<x2,∴x1x2>1,∴1-x1x2<0,
∴f(x2)<f(x1),∴f(x)在[1,+∞)上是减函数.
(2)∵f(x)的定义域为R,f(-x)=$\frac{2(-x)}{(-x)^{2}+1}$=$-\frac{2x}{{x}^{2}+1}$=-f(x),
∴f(x)为奇函数.

点评 本题考查函数单调性定义法证明步骤:取值、作差、变形、定号、下结论,以及函数奇偶性的判断方法:定义法,注意先求出函数的定义域,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.证明:(Ⅰ)$sinαcosβ=\frac{1}{2}[sin(α+β)+sin(α-β)]$
(Ⅱ)$sinα+sinβ=2sin\frac{α+β}{2}cos\frac{α-β}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的空间几何体中,EC⊥平面ABCD,四边形ABCD是菱形,CE∥BF,且CE=2BF,G,H,P分别为AF,DE,AE的中点.求证:
(Ⅰ)GH∥平面BCEF;
(Ⅱ)FP⊥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下频率分布直方图.
(I)求图中x的值,并根据频率分布直方图统计这600名志愿者中年龄在[30,40]的人数;
(II)在抽取的100名志愿者中按年龄分层抽取5名参加区电视台“文明伴你行”节目录制,再从这5名志愿者中随机抽取2名到现场分享劝导制止行人闯红灯的经历,求至少有1名年龄不低于35岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P(2,$\sqrt{2}$),离心率e=$\frac{\sqrt{2}}{2}$,直线l的渐近线为x=4.
(1)求椭圆C的方程;
(2)经过椭圆右焦点D的任一直线(不经过点P)与椭圆交于两点A,B,设直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3,问是否存在常数λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若log3a<log3b<0,则(  )
A.0<b<a<1B.0<a<b<1C.b>a>1D.a>b>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线 y+3=0的倾斜角是(  )
A.B.45°C.90°D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益f(x)与投资金额x的关系是f(x)=k1x,(f(x)的部分图象如图1);投资股票等风险型产品B的收益g(x)与投资金额x的关系是$g(x)={k_2}\sqrt{x}$,(g(x)的部分图象如图2);(收益与投资金额单位:万元).
(1)根据图1、图2分别求出f(x)、g(x)的解析式;
(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m,n为两条直线,α,β为两个不同的平面,则下列说法正确的是(  )
A.若m∥α,α∥β,则m∥βB.若α⊥β,m?α,则m⊥β
C.若m⊥α,m∥n,α⊥β,则n∥βD.若m⊥α,m∥n,α∥β,则n⊥β

查看答案和解析>>

同步练习册答案