精英家教网 > 高中数学 > 题目详情
如图所示,AB是圆台上底面⊙O的直径,C是⊙O上不同于A、B的一点,D是圆台下底面⊙O′上的一点,过A、B、C、D的截面垂直与底面,M是CD的中点,又AC=AD=2,∠CAD=120°,∠BCD=30°.
(1)求证AM⊥平面BCD;
(2)求二面角A-DB-C的正切值.
考点:二面角的平面角及求法,直线与平面垂直的判定
专题:空间角
分析:(Ⅰ)由已知条件推导出BC⊥AC,BC⊥面ACD,从而得到BC⊥AM.由此证明AM⊥平面BCD.
(Ⅱ)作MG⊥BD于G,连接AG,由三垂线定理知∠AGM就是二面角A-DB-C的平面角.由此能求出二面角A-DB-C的正切值.
解答: (本小题满分12分)
(Ⅰ)证明:由AB是⊙O的直径,C是⊙O上不同于A、B的一点,
知BC⊥AC.
∵面ACD⊥面ABC,∴BC⊥面ACD,∴BC⊥AM.
∵AC=AD,M是CD的中点,∴AM⊥CD,
∴AM⊥平面BCD.…(6分)
(Ⅱ)作MG⊥BD于G,连接AG.
由(1)知AM⊥平面BCD,根据三垂线定理得AG⊥BD,
∴∠AGM就是二面角A-DB-C的平面角.
∵AC=AD=2,∠CAD=120°,M是CD的中点,∴AM=1,DM=
3

在Rt△MGD中,MG=MDsin∠MDG=
3
3
sin30°
=
3
2

∴在Rt△AMG中,tan∠AGM=
AM
MG
=
1
3
2
=
2
3
3
.…(12分)
点评:本题考查直线与平面垂直的证明,考查二面角的正切值的求法,解题时要认真审题,注意空间思维能力的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=sin(2x-
π
4
)的单调递减区间是(  )
A、[kπ-
8
,kπ+
π
8
](k∈Z)
B、[kπ+
π
8
,kπ+
8
](k∈Z)
C、[kπ-
π
8
,kπ+
8
](k∈Z)
D、[kπ+
8
,kπ+
8
](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+
y2
4
=1的左、右两个顶点分别为A,B,曲线C是以A,B两点为顶点,焦距为2
5
的双曲线.设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(Ⅰ)求曲线C的方程;
(Ⅱ)设P,T两点的横坐标分别为x1,x2,求证:x1•x2为定值;
(Ⅲ)设△TAB与△POB(其中o为坐标原点)的面积分别为s1与s2,且
PA
PB
≤15,求s12-s22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-2sin2x+a,a∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在(0,+∞)上为减函数,且f(3)=0,求f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,其离心率e=
5
3
,短轴长为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点Q(1,1),直线l:y=x+m(m∈R)和椭圆C相交于A、B两点,是否存在实数m,使△ABQ的面积S最大?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别是a,b,c,已知a2-b2=bc,2sinB-sinC=0,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在无穷数列{an}中,a1=1,对于任意n∈N*,都有an∈N*,an<an+1.设m∈N*,记使得an≤m成立的n最大值为bm
(Ⅰ)设数列为1,3,5,7,…,写出b1,b2,b3的值;
(Ⅱ)若{bn}为等差数列,求出所有可能的数列{an};
(Ⅲ)设ap=q,a1+a2+…+ap=A,求b1+b2+…+bq的值.(用p,q,A表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-(x-1)2
,0≤x<2
f(x-2),x≥2
,若对于正数kn(n∈N*),直线y=kn•x与函数y=f(x)的图象恰有2n+1个不同交点,则
lim
n→∞
(k12+k22+…+kn2)=
 

查看答案和解析>>

同步练习册答案