| A. | 6 | B. | 7 | C. | 12 | D. | 13 |
分析 由a3+a10>0,利用等差数列的性质可得:a3+a10=a6+a7>0,又a6a7<0,a1>0,可得a6>0,a7<0.再利用求和公式即可判断出结论.
解答 解:由a3+a10>0,利用等差数列的性质可得:a3+a10=a6+a7>0,又a6a7<0,a1>0,
∴a6>0,a7<0.
∴S12=$\frac{12({a}_{1}+{a}_{12})}{2}$=6(a6+a7)>0,S13=$\frac{13({a}_{1}+{a}_{13})}{2}$=13a7<0,
则满足Sn>0的最大自然数n的值为12.
故选:C.
点评 本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{2},1$) | B. | (-$\frac{3}{2},1$ | C. | -$\frac{3}{2},1$) | D. | -$\frac{3}{2},1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=xsinx | B. | y=$\frac{{{e^x}-{e^{-x}}}}{2}$ | C. | y=xlgx | D. | y=x3+sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [-1,∞) | C. | [-1,1) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{15}$ | C. | 2$\sqrt{15}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com