精英家教网 > 高中数学 > 题目详情
11.如图甲三棱锥P-ABC的高PO=8,AB=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2CM,则如图乙中四个图象中大致描绘了三棱锥N-AMC的体积V与x的变化关系(x∈(0,3])的是①.

分析 由题意直接求出三棱锥N-AMC的体积V与x变化关系,通过函数表达式,确定函数的图象即可.

解答 :底面三角形ABC的边AC=3,CM=x,∠ACB=30°,
∴△ACM的面积为:$\frac{1}{2}$x•3•sin30°=$\frac{3}{4}$x,
又∵三棱锥N-AMC的高NO=PO-PN=8-2x
所以三棱锥N-AMC的体积V=$\frac{1}{3}$(8-2x)•$\frac{3}{4}$x=-$\frac{1}{2}$x2+2x
当x=2时取得最大值,开口向下的二次函数,
故答案为:①

点评 本题考查几何体的体积与函数之间的关系,求出底面三角形的面积,是本题的一个关键步骤,通过二次函数研究几何体的体积的变化趋势是本题的特点,是好题,新颖题目,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知a>1,且f(logax)=$\frac{a}{{{a^2}-1}}(x-\frac{1}{x})$.
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性与单调性(直接写出结论,不需要证明);
(3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|3≤3x≤27},$B=\left\{{x\left|{{{log}_{\frac{1}{2}}}(2x-1)<-1}\right.}\right\}$.
(1)分别求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}中,已知a7=-2,a20=-28,
(1)求数列{an}的通项公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,O为等腰三角形ABC内一点,圆O与△ABC的底边BC交于M、N两点与底边上的高AD交于点G,与AB、AC分别相切于E、F两点.
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且$AE=MN=2\sqrt{3}$,求四边形EBCF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线m:2x-y-3=0与直线n:x+y-3=0的交点为P.
(1)若直线l过点P,且点A(1,3)和点B(3,2)到直线l的距离相等,求直线l的方程;
(2)若直线l1过点P且与x,y正半轴交于A、B两点,△ABO的面积为4,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=x3-12x+b,则下列结论正确的是(  )
A.函数f(x)在(-∞,-1)上单调递增
B.函数f(x)在(-∞,-1)上单调递减
C.若b=0,则函数f(x)的图象与直线y=10只有一个公共点
D.若b=-6,则函数f(x)的图象在点(-2,f(-2))处的切线方程为y=10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,且a1>0,a3+a10>0,a6a7<0,则满足Sn>0的最大自然数n的值为(  )
A.6B.7C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a1=3,a2=6且an+2=an+1-an,则a19=(  )
A.3B.-3C.6D.-6

查看答案和解析>>

同步练习册答案