精英家教网 > 高中数学 > 题目详情
1.已知a>1,且f(logax)=$\frac{a}{{{a^2}-1}}(x-\frac{1}{x})$.
(1)求f(x)的解析式;
(2)判断f(x)的奇偶性与单调性(直接写出结论,不需要证明);
(3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的取值范围.

分析 (1)换元法解表达式,可得函数解析式;
(2)利用定义判断奇偶性;借助基本初等函数确定函数的单调性;
(3)由单调性解不等式.

解答 解:(1)令t=logax,x=at
代入f(logax)中,得f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x),
(2)∴f(x)的定义域为R,关于原点对称.
又∵f(-x)=$\frac{a}{{a}^{2}-1}$(a-x-ax)=-f(x),
∴f(x)为奇函数.
当a>1时,$\frac{a}{{a}^{2}-1}$>0,ax在R上递增,-a-x在R上递增,故f(x)为增函数;
当0<a<1时,$\frac{a}{{a}^{2}-1}$<0,ax在R上递减,-a-x在R上递减,故f(x)为增函数.
综上所述,f(x)为R上的增函数.
(3)由(1)知f(x)为奇函数,
由(2)知f(x)在x∈(-1,1)为增函数,
故有-1<1-m<m2-1<1,解得1<m$<\sqrt{2}$.

点评 本题考查了函数的基本特征,同时考查了利用函数单调性求不等式的解集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}和{bn}满足a1=2,b1=1,${a_{n+1}}=2{a_n}(n∈{N^*})$,${b_1}+\frac{1}{2}{b_2}+\frac{1}{3}{b_3}+…+\frac{1}{n}{b_n}={b_{n+1}}-1(n∈{N^*})$
(1)求an与bn
(2)记cn=$\frac{1}{{{a}_{n}a}_{n+1}}$-$\frac{1}{{{b}_{n}b}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a=-($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=log23,c=sin880°,把a,b,c按从小到大的顺序是a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=t+3\\ y=3-t\end{array}\right.$(参数t∈R),在以x轴非负半轴为极轴的极坐标系中圆C的方程为ρ=4sinθ,则圆心到直线l的距离为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:f(x)=$\frac{{{a^x}-{a^{-x}}}}{2}$(a>0且a≠1)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的一条渐近线的斜率相等,以原点为圆心,椭圆的短半轴长为半径的圆与直线sinθ•x+cosθ•y-1=0相切(θ为常数),则椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.符号[x]表示不超过x的最大整数,如[π]=3,[-10.3]=-11,定义函数{x}=x-[x],那么下列结论中正确的序号是②③.
①函数{x}的定义域为R,值域为[0,1];
②方程$\{x\}=\frac{1}{2}$有无数解;
③函数{x}是周期函数;
④函数{x}在[n,n+1](n∈Z)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x|x>1},集合N={x|2x+3>0},则(∁RM)∩N=(  )
A.(-$\frac{3}{2},1$)B.(-$\frac{3}{2},1$C.-$\frac{3}{2},1$)D.-$\frac{3}{2},1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图甲三棱锥P-ABC的高PO=8,AB=BC=3,∠ACB=30°,M、N分别在BC和PO上,且CM=x,PN=2CM,则如图乙中四个图象中大致描绘了三棱锥N-AMC的体积V与x的变化关系(x∈(0,3])的是①.

查看答案和解析>>

同步练习册答案