11£®ÒÑÖªÊýÁÐ{an}ºÍ{bn}Âú×ãa1=2£¬b1=1£¬${a_{n+1}}=2{a_n}£¨n¡Ê{N^*}£©$£¬${b_1}+\frac{1}{2}{b_2}+\frac{1}{3}{b_3}+¡­+\frac{1}{n}{b_n}={b_{n+1}}-1£¨n¡Ê{N^*}£©$
£¨1£©ÇóanÓëbn£»
£¨2£©¼Çcn=$\frac{1}{{{a}_{n}a}_{n+1}}$-$\frac{1}{{{b}_{n}b}_{n+1}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

·ÖÎö £¨1£©ÓÉÒÑÖªÇó³öµÈ²îÊýÁÐ{an}µÄͨÏʽ£¬ÔÙÓÉÒÑÖªÊýÁеÝÍÆÊ½µÃµ½ÊýÁÐ{bn}Ϊ³£ÊýÁУ¬ÇóµÃÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©°ÑÊýÁÐ{an}ºÍ{bn}´úÈëcn=$\frac{1}{{{a}_{n}a}_{n+1}}$-$\frac{1}{{{b}_{n}b}_{n+1}}$£¬ÀûÓõȱÈÊýÁеÄǰnÏîºÍÓëÁÑÏîÏàÏû·¨ÇóµÃÊýÁÐ{cn}µÄǰnÏîºÍTn£®

½â´ð ½â£º£¨1£©ÓÉa1=2£¬an+1=2an£¬µÃan=2n£¨n¡ÊN*£©£®
ÓÉ${b_1}+\frac{1}{2}{b_2}+\frac{1}{3}{b_3}+¡­+\frac{1}{n}{b_n}={b_{n+1}}-1£¨n¡Ê{N^*}£©$£¬¢ÙµÃ
µ±n=1ʱ£¬b1=b2-1£¬¹Êb2=2£¬
µ±n¡Ý2ʱ£¬${b}_{1}+\frac{1}{2}{b}_{2}+\frac{1}{3}{b}_{3}+¡­+\frac{1}{n-1}{b}_{n-1}={b}_{n}-1$£¬¢Ú
¢Ù-¢ÚµÃ£º$\frac{1}{n}$bn=bn+1-bn£¬
ÕûÀíµÃ$\frac{bn+1}{n+1}$=$\frac{bn}{n}$£¬
¡àbn=n£¨n¡ÊN*£©£®
Ôòan=2n£¬bn=n£»
£¨2£©ÓÉcn=$\frac{1}{{{a}_{n}a}_{n+1}}$-$\frac{1}{{{b}_{n}b}_{n+1}}$£¬¿ÉÖª${c_n}=\frac{1}{{{2^n}•{2^{n+1}}}}-\frac{1}{n£¨n+1£©}$£¬
¡à${T}_{n}=\frac{1}{{2}^{1}¡Á{2}^{2}}-\frac{1}{1¡Á2}+\frac{1}{{2}^{2}¡Á{2}^{3}}-\frac{1}{2¡Á3}$+¡­+$\frac{1}{{2}^{n}{2}^{n+1}}-\frac{1}{n£¨n+1£©}$
=£¨$\frac{1}{8}+\frac{1}{{2}^{5}}+¡­+\frac{1}{{2}^{2n+1}}$£©-£¨$\frac{1}{1¡Á2}+\frac{1}{2¡Á3}+¡­+\frac{1}{n£¨n+1£©}$£©
=$\frac{\frac{1}{8}£¨1-\frac{1}{{4}^{n}}£©}{1-\frac{1}{4}}$-£¨1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}$+¡­+$\frac{1}{n}-\frac{1}{n+1}$£©
=$\frac{1}{6}£¨1-\frac{1}{{4}^{n}}£©-\frac{n}{n+1}$£®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éµÈ±È¹ØÏµµÄÈ·¶¨£¬ÑµÁ·ÁË×÷²î·¨ÇóÊýÁеÄͨÏʽ£¬¿¼²éÁÑÏîÏàÏû·¨ÇóÊýÁеĺͣ¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=£¨ax2+x£©ex£¬ÆäÖÐeÊÇ×ÔÈ»ÊýµÄµ×Êý£¬a¡ÊR£®
£¨1£©µ±a£¼0ʱ£¬½â²»µÈʽf£¨x£©£¾0£»
£¨2£©Èôa£¾0£¬ÊÔÅжÏf£¨x£©ÔÚ£¨-1£¬1£©ÉÏÊÇ·ñÓÐ×î´ó»ò×îСֵ£¬ËµÃ÷ÄãµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª${log_a}\frac{3}{5}$£¼1£¬ÔòaµÄȡֵ·¶Î§ÊÇ$£¨0£¬\frac{3}{5}£©$¡È£¨1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÈôË«ÇúÏßCµÄ½¥½üÏß·½³ÌΪy=¡À2x£¬ÇÒ¾­¹ýµã$£¨2£¬2\sqrt{2}£©$£¬ÔòË«ÇúÏßCµÄ×¼Ïß·½³ÌΪ$x=¡À\frac{{\sqrt{10}}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¸ù¾ÝÈçͼËùʾµÄα´úÂ룬¿ÉÖªÊä³öµÄSµÄֵΪ13£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÎåÃæÌåABCDEFÖУ¬AB¡ÎCD¡ÎEF£¬CD=EF=CF=2AB=2AD=2£¬¡ÏDCF=60¡ã£¬AD¡ÍCD£¬Æ½ÃæCDEF¡ÍÆ½ÃæABCD£®
£¨1£©Ö¤Ã÷£ºÖ±ÏßCE¡ÍÆ½ÃæADF£»
£¨2£©ÒÑÖªPΪÀâBCÉϵĵ㣬ÊÔÈ·¶¨PµãλÖã¬Ê¹¶þÃæ½ÇP-DF-AµÄ´óСΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚÌÝÐÎABCDÖУ¬¡ÏABC=$\frac{¦Ð}{2}$£¬AD¡ÎBC£¬BC=2AD=2AB=2£¬£®½«ÌÝÐÎABCDÈÆBCËùÔÚµÄÖ±ÏßÐýתһÖܶøÐγɵÄÇúÃæËùΧ³ÉµÄ¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®¦ÐB£®$\frac{4¦Ð}{3}$C£®$\frac{5¦Ð}{3}$D£®2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑ֪ʵÊý¶Ô£¨x£¬y£©Âú×ã$\left\{\begin{array}{l}{x¡Ü2}\\{y¡Ý1}\\{x-y¡Ý0}\end{array}\right.$£¬Ôò2x+yÈ¡×îСֵʱµÄ×îÓŽâÊÇ£¨¡¡¡¡£©
A£®6B£®3C£®£¨ 2£¬2 £©D£®£¨ 1£¬1 £©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªa£¾1£¬ÇÒf£¨logax£©=$\frac{a}{{{a^2}-1}}£¨x-\frac{1}{x}£©$£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÅжÏf£¨x£©µÄÆæÅ¼ÐÔÓëµ¥µ÷ÐÔ£¨Ö±½Óд³ö½áÂÛ£¬²»ÐèÒªÖ¤Ã÷£©£»
£¨3£©¶ÔÓÚf£¨x£©£¬µ±x¡Ê£¨-1£¬1£©Ê±£¬ÓÐf£¨1-m£©+f£¨1-m2£©£¼0£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸