分析 (1)先确定,A,B集合的范围,根据集合的基本运算即可求A∩B,(∁RB)∪A;
(2)根据集合C={x|1<x<a},C⊆A,对C进行讨论,在根据集合的基本运算求解实数a的范围.
解答 解:(1集合A={x|3≤3x≤27}={x|1≤x≤3},$B=\left\{{x\left|{{{log}_{\frac{1}{2}}}(2x-1)<-1}\right.}\right\}$={x|x$>\frac{3}{2}$},则(∁RB)={x|$x≤\frac{3}{2}$}
那么:A∩B={x|$\frac{3}{2}<x≤3$};
(∁RB)∪A={x|x≤3}.
(2)集合C={x|1<x<a},C⊆A,
当C=∅时,a≤1,满足题意.
当C≠∅时,C⊆A,则有:$\left\{\begin{array}{l}{a≤3}\\{a>1}\end{array}\right.$,解得:1<a≤3
综上所述:实数a的取值集合是{a|a≤3}.
点评 本题主要考查集合的基本运算,比较基础.属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{2},1$) | B. | (-$\frac{3}{2},1$ | C. | -$\frac{3}{2},1$) | D. | -$\frac{3}{2},1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{15}$ | C. | 2$\sqrt{15}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com