精英家教网 > 高中数学 > 题目详情
14.已知$sin(\frac{π}{4}+α)=\frac{{\sqrt{3}}}{2}$,则sin(-2α)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

分析 由已知利用两角和的正弦函数公式,特殊角的三角函数值可求sinα+cosα=$\frac{\sqrt{6}}{2}$,两边平方,利用二倍角的正弦函数公式,诱导公式即可化简求值得解.

解答 解:∵$sin(\frac{π}{4}+α)=\frac{{\sqrt{3}}}{2}$=$\frac{\sqrt{2}}{2}$sinα+$\frac{\sqrt{2}}{2}$cosα,
∴sinα+cosα=$\frac{\sqrt{6}}{2}$,
∴两边平方可得:1+sin2α=$\frac{3}{2}$,解得:sin2α=$\frac{1}{2}$,
∴sin(-2α)=-sin2α=-$\frac{1}{2}$.
故选:B.

点评 本题主要考查了两角和的正弦函数公式,特殊角的三角函数值,二倍角的正弦函数公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.P是椭圆$\frac{x^2}{5}+\frac{y^2}{4}=1$上的一点,F1和F2是焦点,若∠F1PF2=30°,则△F1PF2的面积等于(  )
A.$\frac{{16\sqrt{3}}}{3}$B.$16(2+\sqrt{3})$C.$4(2-\sqrt{3})$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个函数中,在(-∞,0)上是增函数的是(  )
A.y=x2+1B.y=1-$\frac{1}{x}$C.y=x2-5x-6D.y=3-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|3≤3x≤27},$B=\left\{{x\left|{{{log}_{\frac{1}{2}}}(2x-1)<-1}\right.}\right\}$.
(1)分别求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[90,100),[100,110),…,[140,150]后得到如图所示的频率分布直方图,则估计本次考试的平均分为(  )
A.121B.119C.118.5D.118

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等差数列{an}中,已知a7=-2,a20=-28,
(1)求数列{an}的通项公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,O为等腰三角形ABC内一点,圆O与△ABC的底边BC交于M、N两点与底边上的高AD交于点G,与AB、AC分别相切于E、F两点.
(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且$AE=MN=2\sqrt{3}$,求四边形EBCF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=x3-12x+b,则下列结论正确的是(  )
A.函数f(x)在(-∞,-1)上单调递增
B.函数f(x)在(-∞,-1)上单调递减
C.若b=0,则函数f(x)的图象与直线y=10只有一个公共点
D.若b=-6,则函数f(x)的图象在点(-2,f(-2))处的切线方程为y=10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=4,△ABC的面积S=2,则A=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案